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Preface

Marbel is a rule-based programming language for programming logic-based agents that inter-
act with an environment and with each other. Agents receive information about their environ-
ment through percepts and can request the environment to perform actions. Agents are part
of a multi-agent system and can exchange information between themselves through messages.
Agents maintain a database that they use for reasoning about their environment and for making
decisions about what to do next.

The language offers a rich and powerful set of programming constructs and features for writing
agent programs. The platform developed for running agent programs also provides support
for connecting multi-agent systems to environments such as simulators, games, and robots. In
principle, there is no limit to the possibilities and a diverse set of environments has been made
available that can be used for programming agents (see Chapter 1 for examples).

The Marbel agent programming language is a successor of the Goalprogramming language.
Marbel simplifies a number of things compared to Goal. Although the basic language elements
are the same, there are a number of important differences. A key difference is that Marbel
agents use a single database instead of a more complicated cognitive state that is used by Goal
agents. There is no difference between knowledge and beliefs any more and Marbel does not
support goals. Marbel further simplifies things as there is no need any more for specifying action
specifications, or for writing percept rules.

Educational materials are available and can be requested from the author. Several assignments
have been developed over time that ask students to program agents for simple environments such
as: the classic Blocks World environment or a dynamic variant of it called the Tower World where
users can interfere, the Wumpus World environment as described in [37], and more challenging
environments such as an elevator simulator, the Blocks World for Teams (BW4T) [29], and the
real-time StarCraft gaming environment.

The language can be downloaded from https://goalapl.dev. This website also contains
installation instructions for the Marbel plugin for the Eclipse environment. Please help us to
further improve the programming language Marbel and its development environment by provid-
ing your feedback. You can contact me at k.v.hindriks@gmail.com.

In order to make the most out of this programming guide, as the typical advice goes when
learning a programming language, the reader is advised to practice using the exercises that are
part of it. This guide is about the programming language and explains how to write agent pro-
grams but does not explain the development environment. Please consult the User Manual that
you can find here to make the most out of the Eclipse plugin for developing agent programs.

Koen V. Hindriks, Utrecht, November, 2022
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Chapter 1

About Agents and Entities

Before we will see how we can write a simple chat agent program in Chapter 2, we first intro-
duce the basic programming model of agents that interact with an environment. Agents
control entities in environments and decide what these entities do. The core of agent-oriented
programming is a model of decision-making where agents make decisions based on what they
believe. In this chapter we identify the key components and capabilities of an agent that enable
it to effectively interact with its environment.

Blocks World 
Tic Tac Toe 

Vacuum World 

Nao Robot 
Emohawk Virtual Environment 

Unreal Tournament 

Starcraft 

Traffic Simulator 

Figure 1.1: Example Environments

1.1 Environments and Controllable Entities
Environments can be almost anything ranging from toy worlds, grid worlds [21], simulators, games,
virtual environments, to physical robots. Figure 1.1 illustrates some example environments. A
classic example from artificial intelligence is the Blocks World [37]. This is a simple world (or,
environment) that allows blocks to be moved by means of a gripper. The vacuum world is a grid
world where virtual robots need to remove dust from the cells in the grid. StarCraft and Unreal
Tournament are examples of well-known real-time strategy games where a player needs to battle
with its opponents. The Nao robot is a well-known physical humanoid robot.
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The environments that agents interact with consist among other things of controllable enti-
ties that can perform actions in the environment. Examples are the gripper in the Blocks World, a
bot, character, or unit in a game, or a robot that acts in the real world. An agent that is connected
to a controllable entity in an environment can control the actions that the entity performs. It
will also see what the entity sees in the environment. The agent receives percepts that inform
it about what the entity can see. Figure 1.2 illustrates the connection between an agent and an
entity. A useful way of thinking about a controllable entity is that it is the body of the agent that
controls it. In other words, you can think of the agent as the mind that controls the body. This
means that the agent makes the decisions about which action the entity should perform. Note
that we do not picture agents as being themselves part of the environment but rather think of
agents being connected to an (entity in an) environment.

Cognitive 
Agent 

Environment 
action 

percept 

entity 

entity 

entity 

entity 

Figure 1.2: Agent Connected to Entity in Environment

It is important to realize that an agent and the environment it interacts with are separate
processes. Things may happen in an agent’s environment while the agent is deciding about what
to do next. Only in a very special class of environments such as the classic Blocks World nothing
changes if an agent does not decide to make the gripper move a block. In other environments,
things are not fully controlled by the agent. For example, dust and dirt may (re)appear in the
vacuum cleaning world in cells which the agent has cleaned before. The difficulty for programming
such an agent is that it may also not perceive these changes and needs to revisit cells it already
visited. In two or more player games such as the Tic Tac Toe game play depends on the agent’s
opponent. In real-time strategy games, moreover, the time an agent takes to make a decision
matters.

1.2 Agents
An agent has three core abilities that enable it to control and interact effectively with an entity in
an environment. The first ability is event processing. This enables the agent to process events
such as percepts that it receives from the environment and messages that agents exchange between
each other to update what it believes about its environment and other agents. Events may also
prompt an agent to reconsider what it decides to do next. The second ability is representing
information. This enables the agent to maintain a model of the environment, which is essential
for keeping track of the state of the environment. It also enables the agent to reason about its
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environment. The third ability is decision-making. This enables the agent to reason about what
it should do next and select an action to perform next. These core abilities relate to important
areas in artificial intelligence.

We will take much of the first ability of processing events of an agent for granted. Although
in practice often, for example, computer vision may be needed to process raw camera images of a
robot camera (one type of event, also called a percept), we will simply assume that some mechanism
is available that transforms such input into symbolic information. In other words, we will take
the process of extracting information from what a robot sees for granted in the remainder. One
reason for doing so is that in games and other virtual environments the problem of information
extraction is largely absent and the task that remains is percept processing in the sense of updating
an agent’s state. We will therefore not be concerned with how sensor output is processed to make
sense out of information obtained through sensors. What is more important in this context is to
understand that the percepts that an agent receives usually only inform it about what the entity
that the agent controls senses or perceives, e.g., sees, hears, etcetera.

For the second ability of representing information, we will rely on the area of knowledge rep-
resentation (KR). This area in artificial intelligence concerns itself with languages and techniques
that enable a system to represent and reason about a domain. An agent needs a knowledge
representation language for representing and reasoning about the environment it interacts with.
Marbel agents use a knowledge representation language for representing percepts, beliefs, and
messages that agents exchange. In the next chapter we will see how the language Prolog can be
used to represent the state of an agent.

The third ability of an agent to make decisions is related to the area of automated planning.
This area in artificial intelligence concerns itself with languages and techniques for representing
and solving planning problems. A plan is a sequence of actions that achieves a goal of the agent.
In order to find such a plan a planner needs information about what the agent believes is the
initial situation and the goal(s) that the agent wants to achieve.

1.3 Summary
The purpose of this chapter was to provide a brief introduction into agents that interact with an
environment and to identify the key abilities that an agent needs to have to be able to interact
effectively with its environment. An agent is connected to a controllable entity from which it
receives percepts about the environment and which it can tell or direct what to do.
An agent has three core abilities to effectively interact with its environment:

• event processing which enables it to update its state using the events it receives;

• representing information which enables it to represent and reason about its environment;

• decision-making which enables it to select an action to perform next.

1.4 Notes
Although we have hinted at the possibility to construct systems of multiple agents, we have left the
topic of programming multi-agent systems for later. Because a basic specification of a multi-agent
system is also needed for running a single agent, the next chapter will already introduce the basic
elements of a multi-agent system.
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1.5 Exercises
Exercise 1.5.1

Select two environments of your own choice and for each of these do the following:

• identify a controllable entity in the environment;

• list the percepts you think the entity might send to an agent that it is connected with;

• list the actions you think that entity can perform in the environment;

• for each action describe when the action can be performed (i.e., which conditions must
hold) and what the effects of successfully performing the action will be.

Exercise 1.5.2
For the entities that you identified in the previous exercise, specify a list of decisions that
an agent that controls those entities might make.

Exercise 1.5.3
Machine learning is also an important area in artificial intelligence. Mention two environ-
ments where the ability to learn would be useful for an agent and explain why you think so.

Exercise 1.5.4
Read the wikipedia item https://en.wikipedia.org/wiki/Memory about human
memory. Discuss the differences between how an agent and how a human remembers by
comparing the three different kinds of human memories (sensory, short-term, and long-term)
with the state of an agent.

https://en.wikipedia.org/wiki/Memory


Chapter 2

First Agent Steps: “Hello World”

In this chapter, we write our first agent program in the programming language Marbel. We start
with a very simple agent that says “Hello, world!”. Similar to “Hello world” programs written
in other languages, the agent outputs “Hello, world!” in the console. We will introduce the core
notions of the programming language. After having created the simple “Hello, world!” agent,
we continue with a walk through of the most important elements of the Marbel language. We
show how the “Hello World” agent can be made to print “Hello, world!” exactly 10 times by
using module parameters to set a goal. Finally, we rewrite this agent and turn it into a simple
script printing agent that, different from the simple “Hello, world!” agent, is connected to an
environment. At the end of the chapter, you should have a basic understanding of the type of
agent programs that you can write in Marbel.

2.1 The MARBEL Agent Programming Language
Marbel is a rule-based programming language. Rules are condition-action rules that enable
the agent to select an action. The rule if true then print("Hello, world!") selects
the action to print “Hello, world!”, for example. We briefly introduce the main elements of the
language. An agent program consists of a collection of files that each serve a different purpose and
correspond with different core capabilities identified in the previous chapter. First, a multi-agent
system (mas) file (.mas2g) is used for launching an agent system, connecting agents to entities
in an environment, and for processing events by subscribing to channels. Second, knowledge
representation files are used for representing information and to create the initial database of an
agent. In our case we will use Prolog (.pl files). Third, module files (.mod2g) that contain
rules are used for programming the decision-making capability of an agent.

2.2 An “Hello World” Agent
All agents are created as members of a multi-agent system. The first step in writing our “Hello
World” agent therefore is creating a mas file. A mas file is used to set up a new mas project and
specifies which files are needed for creating the multi-agent system. You can view a mas file as a
recipe for building and running a multi-agent system.

We assume you have started the Marbel platform and that you know how to create a new
mas project.1 Create a mas project with the name HelloWorld. This will automatically create
a mas file with a mas2g extension. Open this file. You should see a template with an empty
launch policy section. Complete it to make it look exactly like:

1See the User Guide for the Eclipse plugin [31]. A new mas file is automatically created when you create a new
Marbel project in Eclipse. This file is instantiated with a minimal template which you will need to complete.
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launchpolicy{
launch helloWorldAgent.

}

The launch helloWorldAgent code snippet in the launch policy section is called a launch
rule. The name helloWorldAgent directly following the launch command is the name of
the agent definition that will be used to create the agent. Agents referenced in a launch policy
therefore must have a corresponding agent definition in the same mas file. A launch policy tells
the platform when to create and launch an agent. The simple launch rule used here (we will later
see other types of launch rules) can be read as an instruction to launch an agent using the agent
definition for the helloWorldAgent agent whenever the mas is started.

The mas file will complain that the agent referred to is missing. We need to add an agent
definition to create an agent named helloWorldAgent. Do so by adding the following code
before the launch section in the mas file:

define helloWorldAgent {

}

An agent definition specifies a name for the agent and consists of a definition section that
specifies which module files should be used for creating the agent. An agent definition specifies a
type of agent. It can be used, however, to create multiple agents by creating multiple instances of
the agent definition. In our simple example we will only create a single agent instance. We will also
use a single agent definition. Multiple agent definitions are allowed. But they make most sense,
for example, when there are different types of entities in an environment that can be controlled.
Then a different agent type can be used to connect an agent of that type to a corresponding type
of entity in the environment. Note that even when we only have a single agent definition we need
to include it in a mas file. The reason is that only a mas file includes all the relevant information
that is needed to build and launch the agent.

In order to complete the agent definition above, we need to add at least one use clause that
refers to a module file that will be used to create the agent. Complete the definition and make it
look exactly like:

% Simple Hello World agent that prints "Hello, world!" once.
define helloWorldAgent {

use helloWorld for decisions.
}

The definition above tells the system to use a module called helloWorld.mod2g when creat-
ing an agent called helloWorldAgent as the main module for making decisions. Note that the
mod2g extension does not need to be included here. The decision module of an agent contains the
rules for decision-making of that agent. Modules are the basic components that agents are made
of. Another way of saying this is that an agent program is a set of modules. The most important
module that an agent uses to decide what to do next is called a decision module. Also note that
comments can be added using the % sign.

We have not created the module file referenced yet and will do so now. Save the mas file and
create a module file named helloWorld.mod2g; you may want to check out the User Manual on
how to do this. If not yet open, open the module file. You should see a module called helloWorld
with an empty program section. Complete it to make it look exactly like:

use counter.

exit=always.
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module helloWorld {
if true then print("Hello, world!").

}

The first line above is a so-called use clause that indicates that the file counter should be
used to initialize the agent’s database. The extension of this file is left implicit and is used to infer
which KR language will be used by the agent. For example, a .pl file extension indicates that
Prolog will be used. The second line contains an exit condition. The exit condition always
means that the module is immediately exited after executing it, i.e., it will be executed only once.

We are almost ready to run the agent but need to fix a missing reference to the counter file.
Do so by creating an empty counter.pl file, save it, and, if the file is open, close it. We need
some KR file to tell the system which KR language is used. As we do not need any predicates
for our very basic first Marbel program, we can use an empty Prolog file which is only needed
to indicate that we want to use Prolog. Now we are ready to launch the agent. Run the agent
by launching the mas using the Run button (if you don’t know how, check out the User Manual).
Amongst other output, you should see the following in the Console area:

[helloWorldAgent] Hello, world!
agent ’helloWorldAgent’ terminated successfully.

You have successfully created your first agent program! If your agent did not terminate, you
may have forgotten to add the exit condition after the use clause in the module file.

2.3 Module Parameters for Setting Goals
We will now program another agent that is created from a different module file and extend the
capabilities of our earlier helloWorldAgent. Our aim will be to write an agent that is able to
print “Hello, world!”, for example, 10 times. This is not particularly exciting but will allow us
to illustrate in more detail how queries in a rule are evaluated and how actions can be used for
updating an agent’s database.

To get started, within the same project, create a new, second mas file and name it MultipleLines.
As we have seen, a mas file must have at least one agent definition and a non-empty launch pol-
icy section. We will again call our agent helloWorldAgent but use a different module called
helloWorldMultipleLines as the main decision module. To create this module, copy-paste
the helloWorld.mod2g file and name it helloWorldMultipleLines.mod2g. Also add the
following agent definition to the mas file and save the mas:

define helloWorldAgent {
use helloWorldMultipleLines(10) for decisions.

}

Apart from the different module name used, there is another important difference with the
agent definition for our previous agent. The module in our current agent definition has a parameter.
A module can have one or more parameters. Parameters are instantiated with the parameter value
everywhere in program section of a module. That is, the parameter is instantiated in all the rules
in which it occurs with the parameter value. In our agent definition the parameter value is set
to 10. Although parameters can be used for various purposes, here we think of the parameter as
setting a goal. The idea is that the parameter of the helloWorldMultipleLines module sets
a goal to print the "Hello, world!" as many times as the the parameter indicates. In other words,
"Hello, world!" should be printed 10 times in our example. There are other ways to set a target
for an agent but parameters of modules provide one useful way for representing a goal.

To complete our mas file we still need to complete the launch policy. Because we want to
create our agent immediately when the mas is run, as before, the launch policy section consists
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of a single instruction to launch our agent helloWorldAgent. Make sure the launch policy in
the mas file looks as follows:

launchpolicy{
launch helloWorldAgent.

}

2.4 An “Hello World” Agent That Can Count
In order to complete the task of printing multiple lines our agent needs to keep track of progress.
An “Hello World” agent that needs to output multiple lines needs to keep track of the number
of lines that it already printed. We will introduce a counter to keep track of the number of
times the agent has outputted something to the console. To represent the counter we introduce a
predicate printedText/1 with a single argument. An important requirement to be able to use
this predicate is that we should declare it. We can do this by adding a declaration to the Prolog
file counter.pl that we already created as follows:

% declare predicate that is used in a module but not defined here (by a Prolog rule).
:- dynamic printedText/1.

This time we want our agent to base its decision to print “Hello, world!” on its goal to print
this line 10 times. We can do this by modifying the query used in the rule in the module that
our previous agent used. Rules of a Marbel agent are of the form if...then.... Rules for
making decisions of this form can capture the key reason for doing an action in the query of the
rule. Our “Hello World” agent, for example, should print “Hello, world!” if it has printed fewer
than 10 lines.

Now open and make the following changes in the module file helloWorldMultipleLines.mod2g:

• Replace the exit condition exit=always with exit=noaction; we want our agent to
execute the module more than once and only terminate when there is nothing left to do.

• Rename the module to match the name of the module file and add a parameter Lines.

• Replace the query true with the query printedText(Count), Count < Lines in the
action rule of the module .

You should now have a module that looks like:

use counter.

% terminate the agent if there is nothing more to do.
exit=noaction.

module helloWorldMultipleLines(Lines) {
if printedText(Count), Count < Lines then print("Hello, world!").

}

Queries of rules are evaluated on the database of an agent. We should therefore make sure
that the database contains facts of the form printedText(Count) with the variable Count
instantiated with some number. To get started, we introduce a new module that we will use
to initialize the agent’s database with the fact printedText(0). We will add a simple rule
for inserting this fact in the module’s program section. Now create a new module and name it
initCounter and make sure it looks exactly like:
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use counter. % contains a declaration of the printedText/1 predicate.

% initializes the printedText/1 counter to 0 in the database.
module initCounter {

if true then insert( printedText(0) ).
}

We use the counter.pl file again to indicate the module uses Prolog, as before, but this
time also because we use the printedText/1 predicate which needs to be declared by a use
clause at the beginning of the module. The module’s program section consists of a single rule to
insert the fact printedText(0) into the agent’s database. We will use this module as an
init module. An init module is the first module to be executed when the agent is launched.
That means that the action rule in this module will be applied before any other rules are applied.
As a result, the fact is inserted into the initial database that is created when the agent has just
been launched.

To make sure that the agent will actually use the initCounter module for initialization we
still need to add it to the agent definition. Add a use clause for this module to the agent definition
in the MultipleLines mas file:

% Simple Hello World agent that outputs "Hello, world!" 10 times to the console.
define helloWorldAgent {

use initCounter for init.
use helloWorldMultipleLines(10) for decisions.

}

Let’s see what happens if we run this version of our agent. Launch the mas file in debug mode
(check the User Guide for how to do this), and pause the agent after a second or so. Now inspect
the agent’s console. What you will see is not exactly what we wanted our agent to do. Instead of
performing the print action exactly 10 times it does not stop and keeps on printing messages. One
reason for this is that we changed the exit condition in the module helloWorldMultipleLines.
The other part which explains that this module does not terminate is that the agent is always able
to perform the print action (and the noactionexit condition never applies). The point is that the
query will always succeed because the database is initialized with printedText(0) and is never
updated. The agent, in other words, does not yet keep track of how many times it performed the
print action. You can confirm this by inspecting the agent’s database in the Introspector (check
the User Guide) to see that the initial database of the agent has not been changed. The agent
thus will continue inferring that it printed 0 lines.

Exercise 2.4.1
Replace the action in the module initCounter with an action that inserts the fact
printedText(10). Will the agent still perform any print actions? Check your an-
swer by running the modified agent and inspecting its state using the Introspector. (After
finishing this exercise, make sure you undo your changes before you continue.)

2.5 Updating an Agent’s Database
As we saw, the agent does not update its database every time that it performs the print action.
We can make the agent do so by making it respond to the event that it performed an action. An
agent can respond to events such as the event of receiving a percept or receiving a message. An
agent can also react to the event that it performed an action by using a module not for making
decisions but for updating its database. The idea is that every time that an agent decided to
perform an action by executing the module it uses for decisions, it will call the update module.
The main function of this update module thus is to update the agent’s database after performing
an action.
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Create a new module called updateCounter and add the following use clause and rule to it
so that the module looks exactly like:

use counter.

% updates the printedText/1 counter in the database and increases it by one.
module updateCounter {

if printedText(Count), NewCount is Count + 1
then delete( printedText(Count) ) + insert( printedText(NewCount) ).

}

As before, the use clause is needed to declare the predicate printedText/1 that is used in the
module. The query of the rule is used to retrieve the fact that we need to remove from the database.
The comma ‘,’ is Prolog notation for “and”. As a result, after evaluating printedText(Count),
an increase of the current counter by 1 is computed and bound to NewCount. The delete action
removes information from the database. The insert action is performed to insert the updated
information into the database. The + operator is used for combining one or more actions; actions
combined by + are performed in the order in which they appear.

The NewCount and Count in the rule are Prolog variables. You can tell because they start
with a capital letter as usual in Prolog (any identifier starting with a capital is a variable in
Prolog). Variables are used to retrieve concrete instances from facts from the agent’s database
(when querying that database). For example, given that the database of the agent contains the
following fact:

printedText(1246).

performing the query of the rule would bind the variable Count with 1246 and the variable
NewCount with 1247. As a result all occurrences of these variables in the rule will be instantiated
and we would get the instantiated rule:

if printedText(1246), 1247 is 1246 + 1
then delete( printedText(1246) ) + insert( printedText(1247) ) .

Finally, we need to add the module updateCounter to the agent definition so the agent will
use it. We do so by adding another use clause that tells the agent to use it as an updates module,
to make sure it looks like:

% Simple Hello World agent that prints "Hello, world!" message 10 times.
define helloWorldAgent {

use initCounter for init.
use updateCounter for updates.
use helloWorldMultipleLines(10) for decisions.

}

launchpolicy{
launch helloWorldAgent.

}

We are now ready to run our agent again. Do so now to see what happens.

Exercise 2.5.1
What happens if we change the number of lines that the agent wants to print in the mas file
(by changing the parameter of the helloWorldMultipleLines module)? For example,
change the value of the parameter from 10 to 5 and run the mas again.
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2.6 Adding an Environment
So far we have been using the built-in print action to output text to the console. We will now
replace this action and use an environment called HelloWorldEnvironment instead that opens
a window and offers an action or service called printText to print text in this window. Our
“Hello World” agent can make use of this service by connecting the agent to the environment.
Marbel supports loading environments automatically if they implement a well-defined environ-
ment interface called EIS [3, 4]. As an agent developer, it is sufficient to know that an environment
implements this interface but we do not need to know more about it. A diverse set of environments
that implement this interface can be found on eishub on github.

An environment can be added to a multi-agent system by adding a use clause for that
environment at the start of a mas file. All we need to do is to indicate where the environment can
be found. In our case, we want to add the HelloWorldEnvironment environment, which you
can find here. Download and copy this jar file to the HelloWorld project folder. Copying the
jar file to the same folder as the mas file that you created will make sure that the environment
file can be found. Before we proceed, let’s copy the MultipleLines.mas2g and give this file
the name ScriptAgent.mas2g. Add the following use clause at the start of this new mas file:

% launches a window that can be used by the agent to print text to.
use "HelloWorldEnvironment-1.3.0.jar".

The next step is to make sure that our “Hello World” agent is connected to this environment.
An environment makes available one or more controllable entities and agents can be connected
to these entities. Once connected to an entity the agent controls the actions that the entity will
perform. When the HelloWorldEnvironment is launched it makes available one entity. When
this happens the agent platform is informed that an entity has been created. An agent then can
be connected to that entity using a launch rule in the launch policy section. To connect our
agent to the entity made available by the HelloWorldEnvironment we only need to make a
slight change to our earlier launch policy. Replace the launch instruction in the launch policy with
the following launch rule:

launchpolicy{
when * launch helloWorldAgent.

}

The launch rule above adds a condition in front of the launch instruction. The rule is triggered
whenever an entity becomes available, as * matches with any entity. When triggered, the agent
helloWorldAgent is created using the agent definition, and connected to the entity.

The main thing that remains is to start using the new printText service made available by
the environment. To do so, do the following:

• copy and rename the helloWorldMultipleLines module to printScript, and update
the name of the module inside the file,

• replace the print action in the module’s rule with printText, and

• replace the reference to helloWorldMultipleLines(10) in the ScriptAgent mas file
with printScript(11) (why we use 11 here will become clear below).

The module printScript should look like:

use counter.

exit = noaction.

module printScript(Lines) {

https://github.com/eishub
https://github.com/eishub/HelloWorldEnvironment/releases
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if printedText(Count), Count < Lines then printText("Hello, world!").
}

Let’s run the new mas file. But before you do so make sure that you checked the ’Percepts
processed’ in the Marbel logging preferences (Window → Preferences → MARBEL → Logging).
Launch the mas again (in debug mode) and run it. By adding the environment and connecting
the agent to an entity, the agent now printed something to a window that was created when the
mas was started. In the agent’s console, moreover, we now also see:

[helloWorldAgent] percepts processed, removed [] and added [].

This means that the agent now also engages in percept processing but does not yet receive any-
thing from the environment. The agent will receive percepts if it subscribes to the corresponding
channels. For each type of percept, a channel is available that the agent can subscribe to. Which
channels are available depends on the environment. The HelloWorldEnvironment provides
two channels: one for lastPrintedText/1 and one for printedText/1 percepts. An agent
can subscribe to these channels by adding the following code below the use clauses for modules in
the agent definition in the mas file:

replace lastPrintedText/1.
replace printedText/1.

Add these lines to the mas file and run the mas file again in debug mode. When you now
inspect the agent’s console again, you should be able to see the following:

[helloWorldAgent] processing percepts...
[helloWorldAgent] inserted ’lastPrintedText(Hello, world!)’ and

deleted ’lastPrintedText()’.
...
[helloWorldAgent] deleted ’printedText(1)’.
[helloWorldAgent] inserted ’printedText(2)’.

This means that by subscribing to the percept channels, the agent’s database is now automati-
cally updated with new information from the environment! As you can see, the environment keeps
track itself of how many times something has been printed, i.e., how often the printText action
was performed, and informs the agent of this by means of the percept printedText above.

If the environment’s counting is correct (you may assume it is), then something is going wrong,
however. Instead of printing “Hello, world!” 11 times the environment informed the agent it
printed it only 10 times... What happened? Recall that the update module is triggered by events
and therefore also by percepts the agent receives. Because the agent received percepts before
the agent performed an action, the updateCounter module used for updating the database
incorrectly inserted printedText(11) into the agent’s database!

We can learn an important lesson from this: whenever possible use percept information from
the environment to update an agent’s database. To follow up on this insight we will use percepts to
update the agent’s database instead of the rule in the updateCounter module we used before.
We simply do this by removing the use clause for this module in the ScriptAgent mas file! We
also remove the clause for the init module as the environment also provides this initial information.
After removing both use clauses, run the mas again in debug mode and check the database of the
agent to verify that the agent printed “Hello, world!” 11 times.

2.7 A Simple Script Printing Agent
Using the language elements that we have seen in the previous sections, we will now extend the
simple “Hello World” agent and turn it into an agent that prints a script that consists of a sequence
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of different lines. We want different script sentences to be printed on different lines so the only
thing we need to do is make sure that the printText action each time prints the next line in
our script. We also want the agent to store the script in one of its databases.

We introduce a new predicate script(LineNr, Text) to store the different lines of our
script. Introducing new predicates is up to us and we can freely choose predicate names with the
exception that we should not use built-in predicates of the SWI Prolog language. The idea is that
the first argument LineNr of the script predicate is used to specify the order and position of
the sentence in the script. We will use the second argument Text to specify the string that needs
to be printed in that position. Create a new Prolog file script.pl and add the following script
facts to the file:

script(1, "Hello World").
script(2, "I am a rule-based, cognitive agent.").
script(3, "I have a simple purpose in life:").
script(4, "Print text that is part of my script.").
script(5, "For each sentence that is part of my script").
script(6, "I print text using a ’printText’ action.").
script(7, "I keep track of the number of lines").
script(8, "that I have printed so far by means of").
script(9, "a percept that is provided by the printing").
script(10, "environment that I am using.").
script(11, "Bye now, see you next time!").

We will use these facts in the printScript module. Because facts implicitly declare a
predicate we do not need to add an explicit declaration for the script/2 predicate. Now add a
second use clause to the printScript module:

use script.

We need one more modification before we can use the script. We need to include script/2
in the query of the rule in the module. In order to figure out which line in the script we need to
print, the agent should query its database. The idea is that the agent retrieves the number of lines
printed, adds 1 to that number to obtain the next line number, and retrieve the corresponding
text from the database using the script/2 predicate. Of course, we also need to make sure that
the text we retrieved from the script is printed by the printText action. As before, we use the ,
operator to combine these different queries. A variable Text is used to retrieve the correct script
line from the database and for instantiating the printText action with the corresponding text
for this line. Now modify the rule in the printScript module’s program section as follows.

if printedText(Count), Count < Lines, NextLine is Count+1, script(NextLine, Text)
then printText(Text).

Run the script agent to verify that the script is printed. We can now also explain why we used
11 to instantiate the printScipt module’s paramteter: the script has 11 lines.



Chapter 3

The Order of Things

To be able to make the right decisions, an agent needs to reason about the state of the environment
it interacts with. For this purpose, an agent maintains a database. This database is also used for
keeping track of the current state of the environment. In this chapter we will look in more detail at
how we can use Prolog for reasoning about and keeping track of the state of environments. The
Blocks World environment is used as the running example to illustrate the concepts introduced.

An agent needs a strategy for achieving its goal in life. We discuss a simple strategy for solving
Blocks World problems. We show how this strategy can be implemented by a straightforward
translation into action rules in a Marbel agent program. Action rules are rules that consist of
a query and an action. The queries are Prolog queries evaluated on the agent’s database. One of
the main jobs of a Marbel programmer is to come up with a set of Prolog rules that can be used
to specify the queries that are needed to implement action rules. The actions in action rules in
this chapter are environment actions for changing the state of the environment.

3.1 The Blocks World Environment
As a running example in this chapter, we will use one of the most famous environments in Artificial
Intelligence known as the Blocks World [37, 41, 46]. In the Blocks World, there is a single robotic
gripper entity that can move and stack cube-shaped blocks on a table. The gripper has access to
the full configuration of blocks on the table. It can “see” for each block whether it is sitting on the
table or on top of another block, and, if so, which block it is sitting. The goal is to move blocks
from an initial state to a goal state, as illustrated in Figures 3.1 and 3.2. For example, the block
numbered 6 should sit on top of block 4 according to the goal state instead of sitting on 7 as it
does in the initial state. Note that in our version of the Blocks World all blocks are numbered. A
block with a particular number thus is sitting on top of a block labelled with another number (if
not on the table). In our simple visualization of the Blocks World in Figures 3.1 and 3.2 neither
the table nor the gripper is visible (in the Tower World that we will use in the next Chapter 4 we
will see a gripper moving while holding a block).

In one of its most simple (and most common) forms, a block can sit directly on top of at most
one other block. A block thus is part of a stack of blocks and either located on top of a single other
block, or it is sitting directly on the table. To simplify things a bit further, we will assume that
the table is large enough to place all the blocks that are present in a state directly on the table.
Another way of saying this is that there is always room on the table to put a block on it. The
table thus always has a clear spot for a block. The robotic gripper can perform a single action of
moving one block (onto another block or the table). The gripper thus is limited to moving at most
one block at a time and cannot move more than one block simultaneously let alone that it can
move a stack of blocks. The gripper action of moving a block, moreover, can only be performed
if there is no other block sitting on top of it. Moving a block onto another block only can be
performed if there are no other blocks sitting on either of these blocks. If these conditions are

16
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Figure 3.1: Initial State Figure 3.2: Goal State

met, a move action will be successful. If there is no other block sitting on a block, we also say that
that block is clear. Note that moving a block to the table only requires that the block is clear, as
we assume that the table is always clear. These are some of the basic “laws” or constraints of the
Blocks World that we will need to take into account.1

A Blocks World Problem is the problem of how to move blocks from an initial state to a goal
state, taking the constraints of the Blocks World into account. To solve a Blocks World Problem
we need to figure out how we can reach a goal state by moving one block at a time onto another
block or the table. Figures 3.1 and 3.2 illustrate an example Blocks World Problem. We do not
care about the exact positioning of a stack of blocks on the table. We do not care, for example,
whether the stack of blocks on top of block 3 is located to the left or to the right of the stack
of blocks on top of block 2 in the goal state of Figure 3.2. The Blocks World is a toy problem
domain, in both senses of the word. That does not mean that they are simple. Even Blocks World
Problems can be surprisingly hard to solve optimally. An optimal solution of a Blocks World
Problem uses the minimal number of moves to reach a goal state.

1See [16]. For other, somewhat more realistic presentations of this domain that consider, e.g., limited table size,
and varying sizes of blocks, see [20].

https://en.wikipedia.org/wiki/Toy_problem
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Blocks World Problems Can Be Hard

In this chapter, we will develop a good, but not an optimal, strategy for solving Blocks
World Problems. The performance of an agent that solves Blocks World problems is
measured by the number of moves it uses to reach a goal state from an initial state
or configuration. An agent performs optimally if it is not possible to improve on the
number of moves it uses to reach a goal state. The problem of finding a minimal number
of moves to get to a goal state is also called the Optimal Blocks World Problem. This
problem is NP-hard [20]. See [24] for an approach to define heuristics to obtain near-
optimal behaviour in the Blocks World in an extension of the Goal language.
What makes it hard to solve some Blocks World problems optimally, is that it is not
always possible to make a constructive move. If a constructive move cannot be performed
in a configuration, that Blocks World configuration is said to be in a deadlock [41].
A special case of deadlock is where a block is in a self-deadlock. That is the case if
it is misplaced and above another block which it is also above in the goal state; for
example, block 1 is a self-deadlock in Figure 3.1. The concept of self-deadlocks, also
called singleton deadlocks, is important, because on average nearly 40% of the blocks
are self-deadlocks [41].

It will be useful to briefly discuss how we can use a list of numbers for compactly representing
a configuration of blocks in a state. The idea is that we can use the Nth position in or index into
the list to indicate on top of which other block block N is sitting. In case block N is sitting on the
table, we will put a 0 in the list at index N . For example, the list [2, 3, 0, 5, 0, 7, 0] represents the
initial state in Figure 3.1. The first index indicates that block 1 is sitting on top of block 2. The
second index indicates that block 2 is sitting on top of block 3. The third index indicates that block
3 is sitting on the table. Etcetera. Please check for yourself that the list [5, 0, 0, 3, 2, 4, 0] represents
the goal state in Figure 3.2. Although lists of numbers are a compact way of representing block
configurations, we need to be a little careful because not all lists of numbers represent feasible
block configurations. The list [5, 4, 1, 0, 3], for example, requires block 1 to sit on 5, 5 to sit on 3,
and 3 to sit on 1. This is not a feasible configuration as it requires block 1 to be part of a stack
twice! A list of numbers should not have cycles that require a block to be above itself...

Environment Properties of the Blocks World

The Blocks World is fully observable as the gripper can always “see” the complete
configuration of blocks. As the only goal in life of an agent trying to solve a Blocks
World Problem consists of moving blocks, an agent connected to the gripper will be able
to see everything that is relevant for its decision-making.
The effects of the single move action performed by the gripper are completely predictable.
The move either is successful, if the block that is moved and the target location are clear,
or fails (and nothing changes). This means that the Blocks World is deterministic.
The only changes that can happen in the Blocks World are those that are the result of
performing a move action by the gripper. The Blocks World thus is a static environment,
where an agent connected to the gripper has full control.
The Blocks World is discrete rather than continuous because there is only a single
action that can make changes to finite configurations of blocks. In our version of the
Blocks there are no continuous items (such as water flowing from a tap) or continuous
changes (such as a bath tub slowly getting filled by a running tap).
Finally, the Blocks World is a single agent environment as there is only a single entity
(the robotic gripper) that can make changes to the environment. It is also is the only
entity that can be controlled by an agent program.
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3.2 Creating a Blocks World mas
Let’s get started by creating a mas project for the Blocks World. Creating such a project always
starts by creating a mas file. In this mas file, we need to specify which environment connector we
want to use, we need to provide at least one agent definition, and specify a policy for launching
an agent. We use the following program file called BlocksWorld.mas2g:

use "blocksworld-1.3.0.jar"
with start=[2, 3, 0, 5, 0, 7, 0].

define stackBuilderAgt {
use stackBuilder([5, 0, 0, 3, 2, 4, 0]) for decisions.
use mapBWnames for updates.

% percept processing
replace on/2.

}

launchpolicy {
when * launch stackBuilderAgt.

}

Figure 3.3: mas file for connecting an agent to the Blocks World gripper

At the beginning of a mas file a single environment use clause specifies the file that will be
used as connector. In our case, we use the blocksworld-1.3.0-jar file. This Blocks World
connector will also launch the Blocks World simulator (a window displaying the current blocks
configuration). The connector reference following the use command in a mas file can be any
path name to an environment connector file relative to the location of the mas file itself in the file
system where a connector file can be found. A connector file should be a jar file.

An environment use clause can have an additional with clause. A with clause is used to set one
or more initialization parameters of an environment. The values used for setting these parameters
should follow the with keyword. In our mas file, the value of a parameter named start is set to
a representation of the environment’s initial configuration of blocks, using the list representation
we discussed above. This parameter is passed onto the connector when the environment connector
is launched. Which parameters can be set depends on the particular environment used.

The environment use clause is followed by a single agent definition in our mas file. An agent
definition specifies the name of the agent and must have a definition section with use clauses that
reference modules needed for creating the agent. As we have seen already in Chapter 2, a use
clause in an agent definition can have three use cases: it can be used either for decisions,
for updates, or for initialization purposes. An agent definition must have at least one
module that is used for decisions or for updates. In this case, our agent definition has
two use clauses. The first use case specifies that the stackBuilder module will be used for
decisions. This module is the module that will be used to make the agent’s decisions on what
to do next. As in Chapter 2, this module has a parameter used to set the agent’s goal. The list that
sets the goal specifies the desired block configuration. The second use case specifies that a module
called mapBWnames will be used for updates. As we will see below, the stackBuilderAgt
agent will use this module for preprocessing the percepts it receives from the environment.

Percepts an agent wants to receive from the environment also need to be specified in its
definition by means of channel clauses. The channel clause in our definition specifies that the wants
to receive on/2 percepts and that the channel handler replace should be used for processing
these percepts. This handler replaces all previously received percepts of the same type with the
new ones (if any) that are received each agent cycle.

Finally, the mas file contains a launch policy section with one launch rule for launching an
agent. This rule will launch an agent named stackBuilderAgt using the corresponding agent
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definition when the gripper entity becomes available in the Blocks World environment. The agent
name in a launch rule must match with a name used for defining an agent.

3.3 Representing and Reasoning about the Blocks World
After defining a mas project, the next step in developing and writing a Marbel agent program
is to design the Prolog facts and rules that an agent can use for reasoning about its environment.
This is needed next as we will need to provide a use clause referencing a Prolog file in any module
that the agent uses. We will use SWI Prolog [43] for writing a Prolog program (facts and rules).

An important task is to select suitable labels or predicates for talking about the environment.
In general, this task need not be finished in one go. Several iterations may be needed in which
new labels are added or modified during the design of an agent program. This groundwork is
important as the action rules that an agent uses for decision-making depend on it.

To get started, the percepts that are received from an environment typically provide a useful
starting point. One of the most basic concepts in the Blocks World is that a block is sitting on
top of another block or is on the table. The Blocks World environment provides the predicate
on/2 to represent this:

on(X, Y)

Facts of the form on(X,Y) express that block X is (directly) on top of Y. For example, on(1,2)
can be used to represent the fact that block 1 sits on block 2 and on(2,0) can be used to represent
that block 2 is on the table. In Figure 3.1, on(1,2) is the case and on(2,0) and on(1,3) do
not hold. on(1,3) does not hold because on(X,Y) only holds if a block X is directly on top of
Y and there is no other block in between block X and Y. It is important to realize that only blocks
can be on top of something else in the Blocks World. Whenever on(X, Y) holds X thus must be a
block. Y however does not need to be a block but may also refer to the table. As we have discussed
above, in the Blocks World there can be at most one block on top of another block. These rules
are specific to our version of the Blocks World. They cannot be enforced automatically. It is
therefore important to realize that it is up to the agent programmer to stick to these rules and to
use the predicate on/2 in “the right way”.

As a rule of thumb, it is a good idea to introduce predicates that correspond with the most
basic concepts in a domain first. More complicated concepts then may be defined in terms of the
more basic concepts. We will use this strategy here as well.2 To make explicit which blocks are
present in the Blocks World we introduce the unary predicate block/1. Recall that a block must
be on something and only blocks can sit on something else. Therefore, if on(X,Y) holds it must
be that X is a block. We can use this to define the block predicate by the following Prolog rule:

block(X) :- on(X, _).

For this definition to work and to identify all blocks, the agent must have all the facts about
which blocks are sitting on top of another block or the table in a Blocks World configuration. As
the Blocks World is fully observable, we may safely assume this is the case.

The block/1 predicate can be used to define another useful predicate clear/1. We will use
clear(X) to infer that a block Y can be moved on top of X (as long as Y is not bound to the
same value as X). That is, if a block is clear, another block can be moved on top of it. The table
is always clear in this sense, as in our version of the Blocks World the table always has room to
place a block on it. We can capture this by the following Prolog fact and rule:

2It can be shown that the basic concept above is sufficient in a precise sense to completely describe arbitrary,
possibly infinite configurations of the Blocks World; that is not to say that everything there is to say about a Blocks
World configuration can be expressed using only the above predicate [16]. Here we follow tradition and introduce
the predicates on and clear to represent Blocks World configurations.
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clear(0). % 0 represents the table
clear(X) :- block(X), not( on(_, X) ).

Floundering The rule for defining the clear/1 predicate can be used to illustrate an important
issue that needs to be taken into account when writing Prolog code. The issue is that variables in
a negated fact need to be sufficiently instantiated. Reversing the conjuncts in the rule that defines
our clear/1 predicate, for example, would cause a problem. If the rule

clear(X) :- not( on(_, X) ), block(X).

would be used, the query clear(X) without X being instantiated would always fail! In a Blocks
World with at least one and at most a finite number of blocks, however, there must at least be
one block that is clear (only one block would be clear if all blocks were stacked on each other in
a single stack). What goes wrong in the rule above is that the negation operator is applied to the
non-ground literal on(_, X). As the example illustrates this is not safe, as the negation operator
does not bind any variables. A Prolog program that applies negation to a non-ground literal is said
to flounder. As a rule of thumb, to avoid the floundering problem, make sure that each variable
in the body of a rule first appears in a positive literal. In our rule for the clear/1 predicate,
we have made sure that the variable X is bound first by the positive literal block(X) before the
variable is used in the second, negative literal not(on(_, X)). Moreover, in our definition we
have used a don’t care variable _ instead of the variable Y above. This not only indicates that we
do not care about how this variable is instantiated, but also makes sure that no bindings for this
variable are passed on.

Closed World Assumption Another important thing to realize is that we can only be sure
that the definition of clear(X) correctly infers that a block is clear if the Blocks World state is
completely represented. Note that the body block(X), not(on(_, X)) of the rule defining
the predicate clear succeeds for every block X for which it cannot be shown that on(_, X)
holds. This is because the negation in Prolog is negation by (finite) failure. Only in case a search
for a proof of on(_, X) fails Prolog’s negation succeeds. Absence of information thus allows us
to conclude that a block is clear. But this is only correct if that information is not simply missing,
i.e., if all facts about a Blocks World configuration are available in the agent’s database.

Another way to make this point is saying that Prolog supports the Closed World Assumption.
Informally, making the Closed World Assumption means that anything not known to be true is
assumed to be false. In our example, this means that if there is no information that there is a
block on top of another, it is assumed that there is no such block. This assumption, of course,
is only valid if all information about blocks that are on top of other blocks is available. In other
words, the state represented must be complete.

An agent can only keep track of the complete state of its environment if that state is fully
observable. The lesson here is that properties of the environment need to be carefully taken into
account when defining Prolog rules for reasoning about the environment. In our running example,
if an agent would not be able to keep track of the complete configuration of blocks in the Blocks
World, the rule for clear(X) might need to be revised or discarded.

It will be useful to be able to identify the position of a block in a stack of blocks. This allows
us, for example, to check which blocks are sitting below another block and whether this is what
we want (or, need to solve a Blocks World problem). To this end, we introduce and define the
concept of a tower for the Blocks World as follows:

tower([X]) :- on(X, 0). % 0 represents the table
tower([X,Y|T]) :- on(X, Y), tower([Y| T]).
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The rules for the tower/1 predicate recursively define when a list [X|T] of blocks is a tower.
The first rule says that [X] is a tower when X sits on the table, i.e., when on(X,0) holds. This
part of our definition requires that the basis of any tower is grounded on the table. The second
rule says that whenever [Y|T] is a tower, [X,Y|T] that extends this tower with a block X sitting
on top of Y also is a tower. Note that when [X|T] is a tower according to our rules, this does not
mean that block X is clear. In other words, any (sub)stack of blocks that is part of a larger stack
is a tower. We can, for example, derive tower([2,3]) from the facts that represent the initial
state of Figure 3.1. Perhaps this definition does not completely match our common sense notion
of a tower, but for our purposes will work well.

Declaring Predicates that are Used but not Defined It is important to declare all pred-
icates that are used but not defined in a Prolog file are declared so that the agent knows which
predicates it can use in its program. A predicate is used if it occurs anywhere in the agent program
in a query (in an action rule) or in the body of a rule (in a Prolog file). A predicate is not defined
if it does not occur in the head of a Prolog rule. A predicate can be declared by means of the
:- dynamic directive. In our code thus far we have used only one predicate that has not been
defined: on/2. We can declare it by the statement :- dynamic on/2.

To conclude, we can combine all Prolog facts and rules as well as the declaration introduced
above in a single Prolog file that we can use in the modules we will code. Because we will use this
Prolog program later, create a new file and name it blocksworld.pl.

% declaration of the on/2 predicate.
:- dynamic on/2.

% only blocks can be on top of something else.
block(X) :- on(X, _).

% the table is always clear.
clear(0).
% a block is clear if nothing is sitting on top of it.
clear(X) :- block(X), not( on(_, X) ).

% a tower is any stack of blocks that sits on the table.
tower([X]) :- on(X, 0).
tower([X, Y| T]) :- on(X, Y), tower([Y| T]).

3.4 Preprocessing Percept Information
We have assumed that Blocks World configurations can be represented by a list of numbers. But
what kind of percepts does the environment provide? More specifically, what kind of naming
convention for blocks does the environment use?

Let’s try to find out more by running a Blocks World mas. Because we only want to find out
more about the environment’s naming convention for blocks, we first write some dummy code for
the two modules stackBuilder and mapBWnames which are used in the agent definition:

% stackBuilder module
use blocksworld.

module stackBuilder(Goal) {
if true then insert(true).

}

% mapBWnames module
use blocksworld.
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module mapBWnames {
if true then insert(true).

}

Each of the modules uses the Prolog file blocksworld.pl as indicated by the use clauses at
the start of the module file. A use clause has the form use id. where id is the name of a Prolog
file. Note that the file’s extension should not be included in a use clause. In our case we thus
simply write use blocksworld. Note that a use clause must be followed by a dot. As can be
seen in Figure 3.4, the Prolog file is added to the agent’s database. Use clauses are not the only
means available for initializing an agent. In Chapter 2 we saw that rules in an init module can
also be used for initializing the state of an agent.

Note that for the stackBuilder module we also need to specify a parameter. As we are
using this parameter to pass goal state information to this module, we name the parameter Goal.
Obviously, the action rules of both modules will do nothing useful. (The insert(true) action
does not change an agent’s database and thus can be viewed as performing a ‘skip’ action.) But
they are sufficient for our purpose to run the mas file. If we launch our mas project with these
module files in Debug Mode in the Eclipse editor, the agent and environment are initially paused
and we can inspect the agent’s state:

Figure 3.4: contents of the Blocks World agent’s database after initial launch

The state of the agent in Figure 3.4 shows that the initial database of the agent contains all
Prolog facts and rules that we introduced above. That is the good news. The bad news, how-
ever, is that it also shows that the percepts received on the on/2 channel use slightly different
names for blocks than we have assumed thus far. Instead of simple numbers, we get facts like
on(b3,table) which refer to block 3 by b3 and instead of 0 use table to refer to the table.
Evaluating a few queries in the Interactive Console highlights some further issues, as can be seen in
Figure 3.5. The block(X) query still works but now returns the block labels as they are received
from the environment. The clear(X) query does the same for blocks that are clear but also says
that 0 is clear, which we use to represent the table. Because of this, the tower(T) query returns
no solutions.

Exercise 3.4.1

Why exactly does the tower(T) query return no solutions? Provide a detailed explanation.
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Figure 3.5: results of several queries in the Interactive Console

We need to fix this mismatch between the numbers that we have used thus far and the labels
used by the environment. We will write a Prolog rule for mapping environment labels to the num-
bers that our agent expects it needs to work with and use this in the update module mapBWnames
to fix the issue. Later we will also need to map numbers back to labels so we also introduce a rule
for that here. We first introduce the Prolog fact and rules:

label_to_number(table, 0).
label_to_number(Label, Num) :-

not( Label=table ), atom_concat(b, Atom, Label), atom_number(Atom, Num).

number_to_label(Num, Label) :- atom_concat(b, Num, Label).

The first Prolog rule uses the built-in Prolog operators atom_concat/3 and atom_number/2.
To illustrate the first operator, we have, for example, that the query atom_concat(b, 1, b1)
succeeds. This predicate thus can be used to effectively remove all the b’s in the block labels used
by the environment. The other operator maps atoms to numbers, which is required to make sure
that the right data type is used (integers instead of the atom type that is specific to Prolog). It is
possible to use most of the built-in operators of the SWI Prolog system [43] in a Marbel agent
program.
Exercise 3.4.2

Why can’t we use the label_to_number/2 predicate too to compute the Label when we
only have the number Num? Hint: Try evaluating the atom_concat(b, Num, Label)
query without instantiating the Num variable in Prolog.

The purpose of the mapBWnames module is to preprocess the percept information and trans-
form it into the number representation that we have assumed so far. To achieve what we want,
we need to use a new type of action rule of the form forall <query> do <action>:

use blocksworld.

module mapBWnames {
forall on(L1, L2), label_to_number(L1, N1), label_to_number(L2, N2)

do delete( on(L1, L2) ) + insert( on(N1, N2) ).
}

Figure 3.6: new module file for the mapBWnames module
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The reason why we need a different type of action rule is that action rules of the form if
<query> then <action> that we have used before only are applied for one of the possible
bindings that the query <query> returns. In this case, to fix our issue, we need to delete all on/2
facts received from the environment and replace each of these with a new on/2 fact that uses
numbers for representing a Blocks World configuration. In other words, we want to perform the
<action> for all bindings that are returned by the query used in the mapBWnames module’s rule.
This is exactly what the forall <query> do <action> rule does. This rule is evaluated by
first computing all the bindings for <query>, then instantiate the action template <action>
with each of these bindings, and then perform all of the resulting actions. You can check by
yourself by stepping through the agent program with the new mapBWnames module (also make
sure to add the Prolog fact and rule for predicate label_to_number/2 to the Prolog file) that
this yields exactly the database that we were looking for, as can be seen in Figures 3.7 and 3.8.

Figure 3.7: Database Figure 3.8: Interactive Console

3.5 A Strategy for Solving Blocks World Problems
Our agent needs a strategy for solving Blocks World problems. Although we have seen that
optimally solving such problems is hard, it is possible to specify simple strategies that also perform
very well. The strategy that we will implement is based on two key concepts: constructive moves
and misplaced blocks. A move of one block on top of something else is said to be constructive if it
moves the block into the position we want it to be. This means that after making such a move we
will never have to move the block again to achieve the goal state. If, for example, we already have
part of a tower that we want, where block 2 is on the table and 5 sits on 2, then moving block
1 on top of 5 would be a constructive move (check out the goal we specified in the mas file). A
block is misplaced if it sits on top of a tower but we don’t want such a tower with that block on
top of it (it does not match with the goal we have). In the initial state in Figure 3.1, all blocks
except for blocks 3 and 7 are misplaced.

It should be clear from this discussion that we also need to be able to check which blocks
should be on which other blocks in the goal state to identify constructive moves and misplaced
blocks. It is moreover useful and necessary to also be able to identify towers in the goal state.
Recall that the goal state is passed into the stackBuilder module by means of the parameter
Goal. To reason about this goal state, we will introduce two new tertiary predicates on/3 and
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tower/3 and use these to define constructive moves and misplaced blocks:

% block X sits on top of Y in the goal state Goal.
on(Goal, X, Y) :- nth1(X, Goal, Y).

% tower(Goal, T) holds if T is a tower in the goal state Goal.
tower(Goal, [X]) :- on(Goal, X, 0).
tower(Goal, [X,Y|T]) :- on(Goal, X, Y), tower(Goal, [Y|T]).

% moving block X on top of Y is constructive.
constructive(Goal, X, Y) :- tower(Goal, [X,Y|T]), tower([Y|T]).

% block X is misplaced.
misplaced(Goal, X) :- tower([X|T]), not( tower(Goal, [X|T]) ).

For defining on/3, we use the built-in Prolog predicate nth1(Index, List, Element)
which succeeds if the element in the list List at index Index unifies with Element. Here we
exploit our representation of block configurations by means of a list of numbers. As a result, we
have that on(Goal, X, Y) succeeds if the Xth element in the list Goal is Y. In other words,
block X sits on Y in the goal state. The tower/3 predicate is defined analogous to the tower/2
predicate but now also carries the goal state as its first parameter.

The Prolog rule for constructive/3 states that moving X on top of Y is constructive if we
already have a tower [Y|T] and we want tower [X,Y|T]. For example, if we already have tower
[5, 2] and we want [1, 5, 2], then moving block 1 on top of 5 is constructive. The Prolog
rule for misplaced/2 states that a block X on top of a tower [X|T] that we have but don’t
want is misplaced.

3.5.1 Constructive Moves and Moving Misplaced Blocks to the Table
Using our definitions above, we can now specify a simple strategy: move misplaced blocks to the
table, and, if possible, make a constructive move. Clearly, such a strategy will achieve the goal
state, as, in the worst case, it will first move all (misplaced) blocks to the table, and then start
building the towers we want by means of making constructive moves. It is also not difficult to
translate this into two action rules which we can use to program the stackBuilder module.
Apart from the fact that we need to check that making a move is possible, we also should not
forget to map the numbers we use for representing blocks back to the labels the environment
recognizes. Moreover, we check that a block not already sits on the table to prevent trying to
move such a block if it is still misplaced again to the table. A final subtle twist is that we have
to delete the fact on(X, Z) that block X sits on Z which is no longer true after moving block X
(this is no longer updated by percept processing!). We thus obtain the following action rule for
handling misplaced blocks:

if misplaced(Goal, X), clear(X), not( on(X, 0) ), on(X, Z), number_to_label(X, L)
then move(L, table) + delete( on(X, Z) ).

and the following action rule for making constructive moves:

if constructive(Goal, X, Y), clear(X), clear(Y), on(X, Z),
number_to_label(X, Lx), number_to_label(Y, Ly)

then move(Lx, Ly) + delete( on(X, Z) ).

Exercise 3.5.1
Why does the agent need to delete the fact on(X, Z) that a block X sits no longer on Z
but does the agent not need to add the new fact that X sits on the table (after applying the
rule for misplaced blocks) or sits on Y (after applying the rule for constructive moves)?
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Now we have the action rules that implement the key elements of our strategy for solving
Blocks World Problems, the only question that remains is in which order we should place these
rules in the stackBuilder module. The issue is not that order matters for successfully achieving
the goal state or not. The question is rather which order yields the best performance. By testing
both cases: putting the rule for handling misplaced blocks first, or putting the rule for making
constructive moves first, we find find that we should put the rule for constructive moves first. In
that case the agent only needs 7 moves to achieve the goal state, whereas it needs 9 otherwise.

Exercise 3.5.2
Why is putting the rule for constructive moves before the rule for handling misplaced blocks
more efficient than vice versa?

By putting everything together, we get the following stackBuilder module:

use blocksworld.

exit=noaction.

module stackBuilder(Goal) {
if constructive(Goal, X, Y), clear(X), clear(Y), on(X, Z),

number_to_label(X, Lx), number_to_label(Y, Ly)
then move(Lx, Ly) + delete( on(X, Z) ).

if misplaced(Goal, X), clear(X), not( on(X, 0) ), on(X, Z), number_to_label(X, L)
then move(L, table) + delete( on(X, Z) ).

}

3.6 Tracing the Execution of the Blocks World agent
Now that we have created all files that we need in our mas project, including the environment file
as well, in a single project folder, we are ready to execute the mas again. You can run the mas (see
the User Manual [31] on how to do this) but the result is too fast gone again to see what happened.
It is more useful to start the mas in Debug Mode (again, check the User Manual on how to do
that). If you launch the mas in Debug Mode, the system is initially paused. This allows you to
inspect the state (database) of the agent, and to execute the program in a step-by-step fashion.
You should see a window that has popped up and displays the initial state of the Blocks World of
Figure 3.1. You also should see that an agent has been created that is called stackBuilderAgt
and that an environment process called blocksworld-1.3.0 has been launched. Both agent
and environment should be paused.

It is useful to trace the behaviour of the agent that we have created once in detail to understand
what happens. First inspect the state of the agent. You should see the contents of our Prolog
file as well as the initial percepts that we received from the environment. The on/2 facts in the
database of the agent represent the initial Blocks World state in Figure 3.1.

If you continue stepping through the agent program, you will see that the mapBWnames module
is entered. By stepping further you see that the facts in the database are replaced by the rule in this
module by on/2 facts that use numbers for blocks instead of labels such as b1. After completing
the application of the forall... do... rule, the agent steps into the stackBuilder module
for making decisions. You will find that the first action rule in this module is not applicable. There
is no constructive move that the agent can make. The second action rule is applicable and will
select to move block 1 to the table. If you continue stepping you will find that the agent has
begun its second execution cycle. In this cycle, there is still no constructive move that can be
performed, and instead the agent will apply the second action rule for misplaced blocks again and
move block 2 to the table. This move makes it possible to move block 4 onto block 3. In the third
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execution cycle the agent will now apply the first action rule and perform the constructive move
that puts block 4 on top of block 3. The agent needs three more cycles to achieve its goal. In
these cycles the agent does the following:

• Execution cycle 4: moves block 5 onto block 2.

• Execution cycle 5: moves block 1 onto block 5.

• Execution cycle 6: moves block 6 onto block 4.

Finally, in cycle 7, the goal has been achieved and the agent finds that there are no actions selected
any more in its decision module. At that point, no new cycle is started but the agent is terminated
because of the exit condition noaction that we added in the stackBuilder module.

3.7 Looking Only Once
The Blocks World environment has very specific properties that give the agent full control over
it. Because all changes must be the result of actions that the agent performs (the Blocks World is
static and single agent) and the effects of actions are completely predictable (the Blocks World is
deterministic), the agent can compute the next state that results from performing an action itself.
In other words, it does not have to look at the environment state and can compute this state
without receiving any percepts. We are going to illustrate this by making a few small changes to
our agent program.

The first change that we make is to change the type of the mapBWnames module. We are
going to make this an init instead of an updates module. We can do so by replacing updates
with init in the mas file. The idea is that we only have to look once and only have to preprocess
the initial percepts that we receive from the environment.

The second change that we need to make is to make sure the agent now itself inserts a new fact
after making a change to the blocks configuration by moving a block. We will add an insertaction
with the relevant fact to both of the action rules in the stackBuilder module, as follows:

use blocksworld.

exit=noaction.

module stackBuilder(Goal) {
if constructive(Goal, X, Y), clear(X), clear(Y), on(X, Z),

number_to_label(X, Lx), number_to_label(Y, Ly)
then move(Lx, Ly) + delete( on(X, Z) ) + insert( on(X, Y) ).

if misplaced(Goal, X), clear(X), not( on(X, 0) ), on(X, Z), number_to_label(X, L)
then move(L, table) + delete( on(X, Z) ) + insert( on(X, 0) ).

}

After making these changes, run the mas again in Debug Mode and inspect the database of
the agent. Select a fact in the database, use the Find function (CTRL+F) and search for on( in
the search field. You should see the facts as displayed in Figure 3.9.

The facts include the facts that we expect to see but also some new facts that the agent re-
ceived from the environment. Note that these facts correspond with (some of) the moves that the
agent made. For example, we have on(b2,table) which corresponds with the action the agent
performed of moving b2 to the table. This is true for all facts received from the environment.
But for some actions we do not find such corresponding facts.

Exercise 3.7.1
There is no fact on(b1,table) corresponding to the first action of moving b1 to the
table. We also have no fact on(b7,table). Why are these facts missing in the agent’s
database?
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Figure 3.9: on/2 facts in the Blocks World agent’s database

3.8 Summary
A lot of the work of writing an agent program goes into writing code for representing and reasoning
about the environment the agent is interacting with. It is important to build on or re-use the
predicates that are received from the environment. For the Blocks World, we defined what blocks
are and when blocks are clear by means of the on/2 predicate used by the environment. Using
the on/2 predicate we also defined the useful concept of a tower. Because it is important to be
able to reason about the current as well as the goal state, we also introduced analogous versions of
these rules for defining these concepts for the goal state. We did so by adding the Goal parameter
used for passing the goal state to a module to these definitions.

We have designed a simple strategy that is quite effective for solving Blocks World Problems.
This strategy can be implemented by only two action rules in the decision module of the agent.
Even with only two rules we have seen that the order of action rules in a module can make a
difference. For our Blocks World agent, the order mattered because of performance. In later
chapters we will see that order also matters for being successful. In particular, we will see how we
can also exploit rule order when writing action rules.

The most important use of a module for an agent is for making decisions on what to do next.
Modules can be used for other purposes too, though. In this chapter, we have seen how modules
(either an init or an updates module) can be used for preprocessing the percepts that an agent
receives. A new rule of the form forall <query> do <action> was introduced for updating
many facts with a single rule.

By tracing agent program we are able to inspect the state (its database) of an agent. An agent
queries and updates its state at runtime which is somewhat similar to how a Java method operates
on the state of an object. Agent programming, however, works with databases and therefore can
also be viewed as programming with databases. As we are using Prolog, the content of an agent’s
database state is specified as a Prolog program.

Finally, the properties of an environment make a difference for how we can write an agent
program. Although it seems more natural to update an agent’s state in each execution cycle
with the percepts it receives, a Blocks World agent does not need to do so because of the specific
properties of the Blocks World as we have seen in this chapter. It only needs to look once...
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3.9 Exercises

:- dynamic on/2.
block(X) :- on(X,_).
clear(X) :- block(X), not( on(_, X) ).
clear(0).
tower([X]) :- on(X, 0).
tower([X,Y|T]) :- on(X, Y), tower([Y|T]).
above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).
on(1,4)
on(2,0)
on(3,5)
on(4,2)
on(5,1)

Figure 3.10: An Example Database and Goal

3.9.1
Consider the database of Figure 3.10. Which of the following queries succeed? Provide all
possible instantiations of variables, or otherwise a conjunct that fails.

1. above(X,4), tower([4,X|T])

2. above(1,X)

3. clear(X), on(X,Y), not(Y=0)

4. above(X,Y), tower([X,Y|T])

3.9.2
Partial Blocks World States A Blocks World state is a configuration of blocks and can
be identified with a set of facts F of the form on(X,Y). A state F must be consistent with
the “laws” of the Blocks World, i.e., at most one block is directly on top of another, etc. If
B is the set of blocks, we can differentiate incomplete or partial states from complete states.
A state F that contains a fact on(X,Y) for each block X ∈ B is called complete, otherwise
it is a partial state. Using this notion of Blocks World state, we can now also formally define
a Blocks World Problem. A Blocks World Problem is a pair ⟨I, G⟩ where I is a (complete)
initial state and G is a (possibly partial) goal state.
Note that in this version of a Blocks World Problem the goal state may not refer to all
blocks; in that case the agent program developed in this chapter does not work. The reason
is that the query tower(Goal, [X,Y|T)), tower([Y|T]) for expressing that block
X is misplaced only works for blocks that are part of the goal state. Blocks that are not
part of the goal state may, however, still be in the way. This means that the block prevents
moving another block that is misplaced, and therefore needs to be moved itself. Provide an
example of a Blocks World state and goal where this problem occurs.
The definition of the above/2 predicate in Figure 3.10 can help resolve this issue. Work
out a solution. Provide a query that expresses that a block X is in the way in the sense
explained, and explain why it expresses that block X is in the way. Keep in mind that the
block below X may also not be part of the goal state!
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3.9.3
A Blocks World Agent Without Tower Predicates In this exercise we investigate
how we can write an agent program for solving Blocks World Problems that uses a somewhat
simplified Prolog program. The key insight here is that we do not need to reason about
towers if we can start building stacks from a configuration where all blocks are on the table.
The idea is thus to first move all blocks to the table and then start building stacks.
a. The first step is to remove all the Prolog code that depends on the tower/2 and tower/3

predicates. After removing the Prolog code, the compile errors for our mas project will
also indicate that we need to remove the action rules in the stackBuilder module.

b. The second step is to add an action rule for moving all blocks to the table. We can simply
do so by replacing the misplaced/2 predicate with the on(X, _) in the action rule
that we used before for handling misplaced blocks. Run the agent in Debug Mode to
check that by using this single action rule in the stackBuilder module the agent will
move all blocks to the table.

c. Now that we have an agent that moves all blocks to the table, the main question that
remains is how to build the stacks that we want without destroying them again. Let’s
get started by creating an action rule that will only put a block on top of another rule
if that will make progress towards the goal. We needed the tower predicates before to
ensure this, but assuming that we start from a configuration where all blocks are on the
table, the on/2 and on/3 predicates will be sufficient. The first thing to check is that
we want a block X to be on another block Y and that this is not already the case. Then
we need to make sure that the block Y where we want to put another block on is already
in position, i.e. check that on(Goal, Y, W), on(Y, W) succeeds (why do we use W
as variable name?). Finally, as before, we need to check that the move is possible (check
for the relevant clear/1 preconditions), retrieve the current position of block X, and
map the numbers back to the labels recognized by the environment. For this we can use
exactly the same code we used before in the action rule for making constructive moves.
Write this action rule and add it after the first rule in the stackBuilder module. Run
the agent again. What happens?

d. The good news is that if the first rule in the stackBuilder module that we just added
is not applicable, then we know that all blocks must be on the table (why?). The bad
news, however, is that by simply adding our action rule for building stacks after the first
rule, the agent will also immediately destroy the stack we just build again. To solve this
problem, we will create a new module for building stacks and use this module as an action
in a new action rule we will put in the stackBuilder module instead. Create a new
module and call it buildStacks. As this module also needs to know which stacks it
should build, add a parameter Goal in the module after the module name. Now move
the rule we just wrote to the program section of the buildStacks module, and add
a use clause for the Prolog file blocksworld. The last thing to do is to make sure
that the module is being executed as long as we need to reach the goal state. That is,
as long as there are still constructive moves to be made, the agent should stay inside
the buildStacks module. We can make sure it does by adding the exit condition
exit=noaction to the buildStacks module.

e. The next step is to start using the new buildStacks module. We do this by adding
the action rule if true then buildStacks(Goal) to the stackBuilder module
after the first rule. We also need to add the use clause use buildStacks after the
first use clause in this module (check what happens if we would not do this). Now run
the agent again and check it solves the Blocks World Problem.

f. How does the performance of this new agent compare to the agent we wrote in this
chapter? Rank order in terms of performance the agent of this chapter that has the
action rule for making constructive moves at the top of the stackBuilder module, the
one that has the rule for moving misplaced blocks to the table at the top of the module,
and our new agent.



Chapter 4

Change is on the Horizon

In this chapter we will also revisit the order of action rules. Although we already have seen
that the order in which action rules are put can make a difference performance-wise in Chapter 3,
here we will look at how we can exploit rule order when writing a module for decision-making.

Another important theme of this chapter will be the actions that an agent can perform. Differ-
ent from the actions that we have seen before, we will look at actions that take time to complete.

4.1 The Tower World Environment
In the Blocks World we could treat the move action as if its effects are achieved immediately. The
move action is completed instantaneously. We can no longer treat actions as if they take no time
and complete instantenously in the Tower World (see Figure 4.1) that we introduce here.

Figure 4.1: The Tower World Interface

The Tower World is a variant of the classic Blocks World. The main difference is that in
the Tower World moving the gripper, and therefore moving blocks, takes a significant amount of
time. The movement of the gripper is made visible and you can see the gripper moving towards a
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block to pick it up or move somewhere to put the block it is holding down. Both of these actions
are durative in this environment, like most actions are in most environments. There are three
actions that the gripper entity can perform in the Tower World. The action pickup(X), with a
single parameter for indicating which block X to pick up with the gripper, can be performed when
X is clear, and the gripper is not already holding a block. The action putdown(X,Y), where
parameter X should be a block and Y can either be a block name or the table, will put down X if
the gripper holds that block and Y clear. Finally, the special nil action which does not have any
parameters will move the gripper back to the left-upper most corner in the window displaying the
environment. The idea is that when an agent has nothing to do any more to achieve its goal it
should move the gripper back into its initial starting position. This then will provide an indication
that the agent (thinks it) is ready.

The gripper is not the only agent that can make changes. A user (you!) can also move blocks
by dropping and dragging them using a mouse to interact with the environment interface. This
means that an agent that controls the gripper does not have full control like it hardly ever has
in most environments. As a consequence, the effects of actions are not guaranteed. In the Tower
World actions may fail because another agent can interfere. Even though the effects of performing
an action without interference are completely predictable and the Tower World environment is
deterministic, the actions the gripper performs in the Tower World may not always succeed to
put a block at a particular position. We also say that the Tower World environment is dynamic
in the sense that things can change without the agent itself doing anything (in contrast with being
static). Finally, like most environments the Tower World is a multi-agent environment. In such
environments more than one agent can make changes and effect the environment. In the Tower
World the user is this second agent that can also interact with the environment and move blocks.
This introduces some new challenges that the Blocks World agent that we developed in Chapter
3 is not able to handle.

Apart from these key differences the Tower World is similar to the Blocks World. All blocks
have equal size, at most one block can be directly on top of another, and the gripper available can
hold at most one block at a time. The gripper, moreover, also has access to the full state and can
“see” the complete blocks configuration. In other words, the Tower World is fully observable.
There are also only a finite set of blocks in this environment and a limited number of actions avail-
able to make the gripper do something. Although the fact that actions take time has consequences
(they now can fail), otherwise this fact is not relevant for the agent’s decision-making. We can
thus still classify the Tower World as a discrete environment. Finally, the aim is still to move
blocks from a given block configuration to achieve another blocks configuration that represents
the goal state.

The fact that actions take time gives another agent time to interfere. In the Tower World a
user acting as a second agent may move blocks and insert them at arbitrary places back into the
configuration of blocks while the agent tries to do so as well. A user may also remove a block
from or put a block into the gripper. An agent connected to the gripper in the Tower World does
not have full control. While performing an action of picking up a block, for example, it may no
longer be feasible to do so because the block may no longer be clear. It may also be that a block
the gripper is holding can no longer be put into position. If a block becomes obstructed in some
way or is moved to another position, moving the gripper to a particular location thus may no
longer make sense. If that happens, the agent should reconsider what it is doing. Because the
agent cannot be sure of pretty much anything any more, there is a need to be able to monitor the
progress of an action. The agent will need to observe the changes in the Tower World that can
happen due to actions of the second agent. It thus will have to look at all times at what happens
in its environment and cannot disregard percept information as could be done in the Blocks World
(cf. Section 3.7).
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4.2 Creating a Tower World mas
Let’s get started again by creating a mas project for the Tower World. As before, we need to
specify an environment connector, an agent definition, and a policy for launching an agent. We
create a mas file called TowerWorld.mas2g (see Figure 4.2). The environment use clause has
no with clause because the Tower World has no parameters for initializing the environment. The
Tower World is different from the Blocks World in that it requires a user to add blocks to the
environment using the environment’s graphical interface. All blocks that are added are put on
the table initially. In the agent definition, we use a module parameter to pass a goal state to the
towerBuilder module that is used for decision-making as we have done before. Note that we
use lists of numbers again to represent a configuration of blocks. The launch policy can also be
copied from the Blocks World mas file we created in Chapter 3 except for the name of the agent
which we changed to towerBuilderAgt.

use "tower-1.4.1.jar".

define towerBuilderAgt {
use towerBuilder([2, 3, 0, 5, 6, 0]) for decisions.
use mapTWnames for updates.

% percept processing
replace holding/1.
replace on/2.

}

launchpolicy {
when * launch towerBuilderAgt.

}

Figure 4.2: mas file for connecting an agent to the Tower World gripper

The more interesting part concerns the new percept that is received from the environment.1
Using a replace handler, the agent subscribes to the channel for receiving holding/1 predi-
cates. The holding/1 predicate provides the agent with the ability to monitor its gripper. It
informs the agent whether it is holding a block or not at any time. Note that a Marbel agent
is able to monitor progress of actions because it does not block on an action that it sends to the
environment.2 While an action is being performed by an entity such as the gripper in the Tower
World, the agent therefore can monitor progress of the action it is trying to perform by means
of the percepts it receives from the environment. Like the Blocks World, the Tower World is full
observability: Every time percepts are received they provide correct and complete information
about the state, i.e., the configuration of blocks. Because of this we can make use of the Closed
World Assumption to infer whether the gripper is holding a block or not. In other words, if the
query holding(_) does not succeed, we can conclude that the gripper is not holding a block.

4.3 Representing and Reasoning about the Tower World
Most of the groundwork for reasoning about the Tower World has already been done in Chap-
ter 3 and we can re-use most of the Prolog code that we created for the Blocks World. We
create a copy of the blocksworld.pl file into the Tower World mas project which we call

1The Tower World provides a third percept block/1 which we do not use because we can infer when something
is a block rather than the table.

2If an environment itself blocks on a request, and does not provide percepts to an agent while performing
an action, there is little that an agent can do to monitor progress. The typical situation, however, is that the
environment provides percepts while an action is being performed and the agent continuously receives information
that enables it to monitor progress.
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% declaration of the holding/1 and on/2 predicates.
:- dynamic holding/1, on/2.

% block X sits on top of Y in the goal state Goal.
on(Goal, X, Y) :- nth1(X, Goal, Y).

% only blocks can be on top of something else;
% if the gripper is holding something, that also must be a block.
block(X) :- on(X, _) ; holding(X).

% the table is always clear.
clear(0).
% a block is clear if nothing sits on top of it, and it is not held by the gripper.
clear(X) :- block(X), not( on(_, X) ), not( holding(X) ).

% a tower is any stack of blocks that sits on the table.
tower([X]) :- on(X, 0).
tower([X, Y| T]) :- on(X, Y), tower([Y| T]).

% tower(Goal, T) holds if T is a tower in the goal state Goal.
tower(Goal, [X]) :- on(Goal, X, 0).
tower(Goal, [X,Y|T]) :- on(Goal, X, Y), tower(Goal, [Y|T]).

% moving block X on top of Y is constructive.
constructive(Goal, X, Y) :- tower(Goal, [X,Y|T]), tower([Y|T]).

% block X is misplaced.
misplaced(Goal, X) :- tower([X|T]), not( tower(Goal, [X|T]) ).

% helper predicates.
label_to_number(table, 0).
label_to_number(Label, Num) :-

not( Label=table ), atom(Label), char_code(Label, Code), Num is Code-96.

number_to_label(0, table) :- !.
number_to_label(Num, Label) :- integer(Num), Code is Num+96, char_code(Label, Code).

Figure 4.3: towerKnowledge.pl

towerKnowledge.pl. We need to make a few changes because the gripper in the Tower World
can also be holding a block. First, we add holding/1 to the list of declarations at the start
of the file. Because a block is still a block when it is held by the gripper, we also add a clause
to account for that situation in the rule for the block/1 predicate. The rule for the clear/1
predicate needs to be changed for a similar reason because a block that is held by the gripper is
not clear (we cannot put a block on it). We add a clause to exclude this case in the rule.

Because the naming convention in the Tower World is different again from that of the Blocks
World (it uses small case letters a, b, etc. to reference blocks), we have to change the code for
mapping labels to numbers and vice versa. We do so by using the built-in char_code/2 predicate
instead of the atom_concat/3 predicate. We need to take some care to handle the different
Prolog data types that the char_code/2 predicate expects appropriately. As a first parameter,
this predicate expects a term of type atom. As a second parameter, the predicate expects a term
of type integer. We add some checks to our rules to make sure they are only applied when the right
data types are fed into the predicates label_to_number/2 and number_to_label. Because
we will not remove the percepts received from the environment, we will also need to handle the
case where 0 needs to be mapped back to the table label; the cut ! operator from Prolog is used
to prevent that the rules for number_to_label return any alternative bindings when Num is 0.

Otherwise, we simply re-use most of the code for, e.g., the tower/1 and tower/2 predicates.
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4.3.1 Preprocessing Percepts Again
As before in Section 3.4, we need to handle the naming convention that the Tower World uses
which is different from the numbers our agent is able to work with. Getting this right for the
Tower World, however, is more involved than for the Blocks World because it takes time before
changes are realized and the corresponding percepts are received from the environment. There are
two different percepts to handle, moreover, and trying to devise an update strategy to keep track
of changes in the environment instead of relying on the information received from the environment
itself through percepts is difficult. We therefore choose to implement a different approach that
does not remove the percepts received from the environment but just adds their corresponding
counterparts that use numbers to refer to blocks instead of alphabetic characters. Adding the facts
with numbers instead of labels is relatively easy given our prior work on the mapping predicate
label_to_number. We also need to remove these facts again, however, when the environment
changes. To do so we exploit the fact that the Tower World is fully observable. Because the agent
always “sees” all there is to see in the Tower World, we can remove a fact with numbers if we do not
find the corresponding fact with labels any more in the database. For example, initially we have
on(b,table). The corresponding fact on(2,0) will then be added to the database. However,
suppose now that block b is moved onto c. The replace channel handler for on/2 will then
update the database and remove the fact on(b,table) and insert the fact on(b,c). Because
we no longer can find the on(b,table) in the database any more, we can then conclude that we
need to remove the corresponding fact on(2,0) from the database too. Of course, we should also
add on(2,3). A similar logic can be applied to the holding/1 predicate. To summarize this
discussion, we provide the code for this approach of preprocessing percepts in the mapTWnames
module:

use towerKnowledge.

module mapTWnames {
forall on(L1, L2), label_to_number(L1, N1), label_to_number(L2, N2)

do insert( on(N1, N2) ).
forall on(N1, N2), number_to_label(N1, L1), number_to_label(N2, L2), not(on(L1,L2))

do delete( on(N1, N2) ).

forall holding(L), label_to_number(L, N)
do insert( holding(N) ).

forall holding(N), number_to_label(N, L), not( holding(L) )
do delete( holding(N) ).

}

Figure 4.4: the mapTWnames module

4.4 Actions in the MARBEL Language
Before we move on to design a strategy for our Tower World Agent, we take a moment to look
in more detail at the actions that an agent performs. An action is defined by its name id,
and the number of parameters of the form (t1, ..., tn) it has. Parameters of an action are
instantiated at runtime. An action does not need to have parameters and in that case only a name
(without brackets) needs to be provided. Only actions that are fully instantiated should be
performed by an agent. That is, all free variables in parameters of an action must have been fully
instantiated with ground terms. This is a general requirement that applies to all actions. For a
move(X, Y) action this means, for example, that the variables X and Y need to be instantiated
with ground terms that refer either to a block or to the table before it can be performed. Actions
must be fully instantiated to ensure that it is clear which action exactly should be performed.
What, for example, does it mean to perform the action move(X,table) when the variable X has
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not been instantiated? There seems to be no reasonable option to perform actions that are not
fully instantiated.

Actions made available by an environment are called environment actions. If an agent is
connected to an environment, such actions will be sent to the environment for execution. In that
case, it is important that the name of an action corresponds with the name that the environment
expects to receive when it is requested to perform the action. Check the environment’s documenta-
tion to obtain this information. If an agent tries to perform and send an action to an environment
that is not recognized by that environment, the agent program will generate an error and will be
terminated.

An agent performs environment actions to effect changes in its environment in order to achieve
its goals. It is important for the agent to know when an action can be performed. An agent should
only choose to perform an action if the conditions for being able to perform it in the environment
hold. Preconditions specify whether it is possible to perform an action. A precondition can be
viewed as a query φ that is evaluated against an agent’s database to check whether it succeeds or
not. When an agent performs an action it is useful to check first whether the preconditions for
being able to perform the action hold. Actions are enabled when this is the case.

4.4.1 Instantaneous and Durative Actions
Performing an environment action such as the move action means that the action is sent to the
environment that the agent is connected to. The environment then forwards the action to the
entity that the agent is connected to. The entity thus is requested to perform the action in the
environment. As all of this and performing the action itself may take time, it is important to
distinguish between instantaneous and durative actions. The difference between the two is
that the time needed to execute an instantaneous action can be neglected but the time needed to
execute a durative action cannot. In the case of an instantaneous action, we can then conclude
that its effects are realized immediately when the action is performed. Actions that take time are
called durative actions. The effects of durative actions are established only after some time has
passed. Moreover, these effects are not guaranteed because of other events that may take place
while the action is being performed. All actions available in the Tower World are durative.

As a rule of thumb, you should assume that executing an environment action takes time and
an environment action is durative (with only very few exceptions which should be indicated in
the documentation for an environment). In the classic Blocks World environment we may assume
that the effects of a move action are realized instantaneously. This is very different for durative
actions such as navigating a robot or moving a gripper to a block. It takes time to realize the
effects of durative actions.

This has important implications. The effects of a durative action might never be realized
because the action might fail, e.g., when an agent cannot navigate somewhere because obstacles
prevent it from going there, or a block is removed from the gripper. In all of these cases, the
effects of environment actions can only be perceived by an agent if it receives the correponding
information via percepts from the environment.

Another issue that we need to consider when programming an agent that performs durative
actions is what happens when an environment has been requested to perform a durative action and
the agent requests the environment to perform another action. Recall that an agent does not block
on a durative action until it completes, and should not do so, because it is important to monitor
the progress of the action. If, for example, in the Tower World the action putdown(X,Y) is not
feasible any more because a user has put another block than X on top of block Y, it is important to
be able to interrupt and terminate the action putdown(X,Y) and initiate another, feasible action
instead. In this specific example, it would make sense to send a new command to put block X
on the table instead by means of performing the action putdown(X,table). This works in the
Tower World because durative actions that are still in progress are cancelled if another action is
performed. The durative action is ended and the gripper immediately continues with performing
the new action.
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One example of cancelling is worth mentioning in particular: actions typically cancel actions of
the same type. As a rule, actions are of the same type if the action name is the same. For example,
the action putdown(X,Y) where Y ̸=table can be cancelled by the action putdown(X,table)
provides. Another example is provided by the move action in StarCraft. If this action is
performed continuously (the agent very quickly and repeatedly instructs a bot to perform this
action) with different parameters, the bot being instructed to do so actually comes to a halt.
There is simply no way to comply with such a quickly executed set of instructions for the bot.
But what would you expect to happen if an agent performs exactly the same action again while
already performing that action?

It should be noted that other things than cancelling a durative action that is in progress can
happen in other environments with other actions. Less sensible and less frequent possibilities
include queuing actions that are being sent by the agent and executing them in order or simply
ignoring new actions that are requested by an agent while another action is still ongoing.

An important alternative, however, which often makes sense is to perform actions in parallel.
Examples where this is the more reasonable approach abound. In StarCraft, for example, a
bot should be able to and can move and shoot at the same time. A robot should be able to and
usually can move, perceive and speak at the same time.

4.4.2 Built-in Actions Available in the MARBEL Language
We now briefly discuss the built-in actions that are available in the Marbel programming lan-
guage. Some of these actions we already have been using while others are new. They include
actions for changing the database of an agent, for printing messages to the console, logging in-
formation to a file, for making an agent go to sleep, for setting and cancelling timers, and for
communicating information with other agents. We discuss these actions here except for the send
action that is used for communicating messages to other agents, which is discussed in Chapter ??.

Modifying an Agent’s Database There are two built-in actions available for modifying an
agent’s database. First, the action:

insert(<update>)

can be used to insert <update> into the agent’s database. <update> should be a conjunction of
Prolog literals. The insert action can always be performed. The insert action adds all positive
literals that occur in <update> to the database of the agent and removes all facts that occur
in negative literals in <update> from the database. For example, insert(not(on(1,2)),
on(1,0)) removes on(1,2) from the database and adds on(1,0). As a result of performing
an insert(<update>) action the query <update> will succeed.

Second, the action:

delete(<update>)

can be used to delete <update> from the agent’s database. The delete action can be viewed
as the inverse of the insert action: Instead of adding literals that occur positively in <update>
it removes such literals, and instead of removing negative literals it adds those literals.

Strictly speaking we could do without the delete action as we can achieve the same result
with an insert action. Using both actions, however, makes a program easier to read. It is
considered best practice to use insert only for adding facts and to use delete only for removing
facts. For example, instead of writing insert(not(on(1,2)), on(1,0)), it is better to use
a combination of the two actions insert(on(1,0)) and delete(on(1,2)). Multiple actions
can be combined by the + operator. Using this operator we can write:

insert(on(1,0)) + delete(on(1,2))
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which would have exactly the same effect as the single action insert(not(on(1,2)), on(1,0)).
The + operator can be used to combine as many actions as needed. As a rule of thumb, however,
it is best practice to at most include one external action in a list of actions that are combined by
+. The actions combined by + are executed in order of from left to right.

One thing to note about the delete(<update>) action is that it removes all positive literals
that occur in <update>. The delete action thus does not support minimal change in the sense
that no more information would be removed than is strictly necessary to make sure that the query
<update> does not succeed any more. For example, delete(p, q) removes both p and q
instead of only removing either p or q which would be sufficient to make the query p, q fail.

Printing a Message We have used the print action already in Chapter 1. The action:

print(<term>)

prints the Prolog term <term> to the standard output console. Here, <term> can be any term,
including a variable, as long as the term is closed when the print action is performed.

Logging to a File The action:

log(<parameter>)

can be used to write logging information to a file. Because logging is platform dependent, more
information on this action can be found in the User Manual [31].

Sleeping The action:

sleep(<term>)

sleeps the agent for <term> milliseconds, i.e., it freezes the agent for that amount of time. After
the sleep, the agent will continue executing as if any other action just had been performed.

Timers The action:

starttimer(<name>,<interval>,<duration>)

can be used to start a timer. If a timer with the given <name> already exists, it will be replaced.
A timer in Marbel will generate a percept on each <interval> milliseconds, starting from the
call of the action until (and including) <duration> milliseconds have elapsed. Such percepts will
be of the form:

timer(<name>,<elapsed>)

where elapsed is the number of milliseconds of the current interval; elapsed will thus always
be a multitude of interval (and it therefore does not make much sense to not make duration
a multitude of interval either). Note that if the cycles of an agent take longer than inter-
val milliseconds, it is possible to receive multiple timer/2 percepts at once. Moreover, if a
timer did not reach an interval, a timer percept will not be present for it. For example, calling
starttimer(example,1000,10000) will generate a percept every second, thus creating a se-
quence of timer(example,1000), timer(example,2000), ..., timer(example,10000)
percepts.

The action:
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canceltimer(<name>)

can be used to cancel a timer (i.e., make it stop generating percepts) before its duration has ended.
If a timer does not exist or has already ended, a warning will be printed.

Like all other actions, the built-in actions that we discussed here must have been fully instan-
tiated when they are executed. That is, all variables must have been instantiated with ground
terms. This is also required for actions that are combined by the + operator. Finally, all built-in
actions that have been discussed here can for almost all purposes be treated as instantaneous ac-
tions as the time they take to execute is typically negligible compared to the speed things change
in an agent’s environment.

4.5 A Strategy for the Tower World
To specify an effective strategy for our Tower World agent, we will first pretend there is no other
agent that can interfere with what we are trying to achieve. To get started we then first need
to think about when the agent should pick up a block. In the Tower World, a good reason for
picking up a block (and thus to hold it) is that a constructive move can be made with the block.
As discussed in the previous section we also need to check whether the preconditions for picking
up a block are satisfied too: The block should be clear and the gripper should not be holding a
block already. Furthermore, we should avoid making redundant attempts to move a block. For
this we need to check that the block we want to move the block we intend to pick up is clear, and
that the block we want to pick up is not already where it should be. And, last but not least, we
should map the number for the block back to the label expected by the environment. We add the
following rule to the towerBuilder module for picking up a block:

if constructive(Goal, X, Y), clear(X), clear(Y), not( holding(_) ), not( on(X, Y) ),
number_to_label(X, L)

then pickup(L).

As you can check by running the agent (don’t forget to add a sufficient number of blocks using
the New Block button on the interface!), using this rule the agent moves the gripper to pick up
block b in the environment. The next thing we should see to is to then put the block the gripper
is holding down again on the block we want it to be. The following rule will achieve this:

if constructive(Goal, X, Y), clear(Y), holding(X),
number_to_label(X, Lx), number_to_label(Y, Ly)

then putdown(Lx, Ly).

Note that in this case we do not need to check that X is already on Y because we already check
that the gripper is holding X. Because putting a block down should be prioritized over picking up
a block, we put our new rule before the previous rule in the towerBuilder module.

As you can check again, the agent will now build the towers that it should build. That means
that without interference the agent is able to achieve its goal. However, if we now start interfering
by moving some blocks to positions where they are misplaced, the agent is at a loss and the gripper
stops moving. Clearly, the agent does not know how to handle misplaced blocks and is not able
to respond to actions of a user that interfere with the agent’s goal. We could get away with this
because thus far we have exploited the fact that all blocks are initially put on the table. In that
case the agent can reach the goal state by only making constructive moves (compare exercise 3.9
in Chapter 3).

In the remainder of this section, we complete the design of an agent program that is able to
respond appropriately to actions of another agent in the multi-agent Tower World. The first issue
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that we will fix is to introduce another rule that instead of picking up a block when a constructive
move can be made picks up a block when it is misplaced. We can almost verbatim copy paste
the rule for the constructive move case above and only need to replace the constructive/3
predicate with the misplaced/2 predicate and replace the remaining Y variable which no longer
is instantiated (we need to prevent floundering!) with a 0 representing the table:

if misplaced(Goal, X), clear(X), not( holding(_) ), not( on(X, 0) ),
number_to_label(X, L)

then pickup(L).

Because we should prioritize constructive moves over moving misplaced blocks (as we have
seen in the Blocks World, that is more efficient), we put our new rule last in the towerBuilder
module.

As you can check again, as long as we only move a block in a position where it is misplaced
when the gripper is empty (not holding a block), the agent is able to continue to make progress up
and until it needs to put down a misplaced block again with which it can not make any constructive
move. We need to add another rule to the module for handling this case. The most simple rule
for doing so is:

if holding(X), number_to_label(X, L) then putdown(L, table).

This rule is surprisingly simple compared to the other rules we have introduced so far. This
is in part due to the fact that there are no preconditions for putting a block on the table (as by
definition the table is always clear) and the fact that a block that is held cannot already be in a
position we want it to be. Moreover, we already have another rule for putting down a block to
make a constructive move, so we do not have to check for that either.
Exercise 4.5.1

Before you read any further, think about where you would put the rule introduced above in
the towerBuilder module. Why would you put it there?

We will now put everything together and try to simplify. But first, we need to decide where
to put the last rule we defined. First of all, if the agent is holding a block, it has to put it down
somewhere (the gripper can hold at most one block). Now, if the agent holds a block, it should,
first, try to put it in position and make a constructive move, but, if that is not possible, put it
somewhere on the table.
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Now let’s put everything together to see if we can simplify our code:

use towerKnowledge.

module towerBuilder(Goal) {
% put down a block on another block if a constructive move can be made with it.
if constructive(Goal, X, Y), clear(Y), holding(X),

number_to_label(X, Lx), number_to_label(Y, Ly)
then putdown(Lx, Ly).

% otherwise, when holding a block, put it down on the table.
if holding(X), number_to_label(X, L) then putdown(L, table).

% NONE OF THE RULES ABOVE IS APPLICABLE AT THIS POINT:
% THIS MEANS THE AGENT IS NOT HOLDING A BLOCK!
% if a constructive move can be made with a block pick it up.
if constructive(Goal, X, Y), clear(X), clear(Y), not( holding(_) ), not( on(X, Y) ),

number_to_label(X, L)
then pickup(L).

% if a block is misplaced pick it up.
if misplaced(Goal, X), clear(X), not( holding(_) ), not( on(X, 0) ),

number_to_label(X, L)
then pickup(L).

}

Thus far we have reasoned about which things should get priority to decide in which order we
should put the action rules that we wrote. But we can further exploit rule order to simplify our
code. First of all, we can derive information from the fact that the first applicable rule is applied
in a module for decision-making (our towerBuilder module is such a module). This means that
we would only consider applying the third rule when the first two rules are not applicable. But
clearly, by inspecting the second rule, this means that the agent can not be holding a block if that
rule is not applicable. The first simplification that we can make, therefore, is that we do not need
to check that the agent is not holding a block in the third and fourth rule. We thus can remove
this check from the queries of these rules.

The second simplification of our code that we can make uses a new feature of the programming
language: nested rules. Instead of an action a rule can also have a rule section as head. Such
rules are of the form

if <query> then {
...

}

where the dots . . . can be replaced by one or more action rules. By pulling the common parts of
the two first rules out of these rules and renaming the single variable used in the second rule, we
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arrive at the following code for the towerBuilder module:

use towerKnowledge.

module towerBuilder(Goal) {
% if the agent is holding a block, put it down somewhere.
if holding(X), number_to_label(X, Lx) then {

% put down block X on block Y if a constructive move can be made with it.
if constructive(Goal, X, Y), clear(Y), number_to_label(Y, Ly)

then putdown(Lx, Ly).

% otherwise, put it down on the table.
if true then putdown(Lx, table).

}

% if a constructive move can be made with a block pick it up.
if constructive(Goal, X,Y), clear(X), clear(Y), not(on(X,Y)), number_to_label(X, L)

then pickup(L).

% if a block is misplaced pick it up.
if misplaced(Goal, X), clear(X), not(on(X, 0)), number_to_label(X, L)

then pickup(L).

% move the gripper back to its home position when done.
if true then nil.

}

Note that we also added a finishing touch by adding a new rule for moving the gripper back
to its initial position using the nil action when nothing else can be done. It now is up to you to
test the agent and verify that it is operating correctly, with which we conclude the design of our
agent for the multi-agent Tower World.



Chapter 5

Getting Things Done (Together)

Thus far we have looked at developing single agent programs, even though there might be other
(human) agents interfering with the goals of the agent. In this Chapter we will look at how
multiple agents can communicate and coordinate to achieve their joint goal. We will also look in
more detail at channels and how they can be used for processing percepts from the environment
and messages that agents exchange between themselves. Another theme discussed in this chapter
is how to call modules from other modules and how variants of the linear rule evaluation order can
be used to explore the grid in the Vacuum World that is used as running example in this chapter.

5.1 The Vacuum World
The Vacuum World is a grid world consisting of cells that can be dusty and, if so, should be
cleaned by one or more VacBots that are present in the world (see Figure 5.1).

Figure 5.1: The Vacuum World

Initially, a VacBot is randomly positioned somewhere in the grid facing in one of the four
directions north, east, south, or west. VacBots cannot occupy the same cell. VacBots move in a
continuous fashion from cell to cell and can perform a move(Dir) action where Dir is indicates
whether the move is to a cell to the north, east, south, or west, as long as such a movement
is not obstructed by obstacles or another VacBot. If they are facing in a different direction then
the direction they are instructed to move to, a VacBot will first turn to change the direction it is
facing in and then move a forward move in the right direction. Turning and moving takes time. At
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the boundaries of the grid, obstacles prevent VacBots from moving of the grid. In case a VacBot
bumps into an obstacle, the move it tries to make fails and the VacBot remains in the cell it
already is. Besides moving, a VacBot can always perform a clean action in the cell it is in. If
there is dust, a cleaning action will be performed until all dust has been removed. If there is no
dust, a clean action does nothing and finishes immediately. There are two performance measures
displayed at the bottom of the Vacuum World simulator window indicating how many dusty cells
have been cleaned and how much time has been used thus far. The field of vision of a VacBot is
limited and depends on the direction it is facing. A VacBot can see the contents of the cell it is
in, and can look to the left, right, forward, and see the contents of the cells to the left and right
of the the cell directly in front of it. In total, a VacBot thus “sees” the contents of six cells (see
Figure 5.2).

Figure 5.2: Field of Vision in the Vacuum World

The environment can be configured in different ways. The number of VacBots that are present,
the size of the grid, and whether dust is (re)generated or not can be varied. In case the generation
of dust is activated, dust and dirt may (re)appear in the vacuum world in cells which the agent
has cleaned before. In that case the VacBots do not have full control over what happens in the
environment.

The Vacuum World is partially observable because of the limited field of vision of a Vacbot.
VacBots thus will have to explore the grid to locate the cells with dust. In this chapter, we will
disable (re)generation of dust to make sure that VacBots are able to fully clean the grid, which
will be the main goal in life of our agents. Because in this case the environment does not change if
an agent does not do anything, this version of the Vacuum World is static. The effects of actions
that VacBots are predictable and therefore the Vacuum World is deterministic. Even though the
amount of dust in a cell can vary and it takes time to clean dust, we can treat the Vacuum World
as a discrete environment because what really counts for the decision-making of an agent are
the finite number of cells in the grid that generate at most a finite number of percepts and action
possibilities. Initially, we will focus on developing a single agent controlling a single VacBot that
is able to clean the grid. In the second part of this chapter, we discuss a multi-agent version of
the Vacuum World where multiple VacBots need to coordinate their effort to clean the grid to do
this more efficiently than a single VacBot.

Agent’s Goal in Life The main purpose of VacBot’s in the Vacuum World is to clean dust
(as efficiently as possible). In this chapter we will not discuss how to optimize performance of
such bots but focus on the job of cleaning all dust and dirt present in the Vacuum World grid.
We specify the agent’s main goal in life by the following requirements. First and foremost, the
agent(s) should (1) make sure that all dust has been cleaned. Thereafter, we require agents (2)
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to return to their original starting position when done, (3) and self-terminate when back at that
position. This will make it clear to us that the agent(s) has (have) finished its (their) job.

5.2 Creating a mas for the Vacuum World
We first create a mas file VacuumWorld.mas2g. The environment use clause has a with with
several parameters for initializing the Vacuum World. The level parameter can be used to
indicate how many VacBots will be present in the Vacuum World. The Vacuum World grid size
is increased if more VacBots are present in the World. When this parameter is used, also only
a limited number of obstacles are randomly placed inside the grid (2x the number of VacBots
present).1 The generation parameter is set to "no" to prevent dust from being generated by
the environment. The speed parameter is useful to speed up the movement of the VacBots to be
able to quickly get a sense of how the VacBots perform in the Vacuum World.

use "vacuumworld-1.3.2.jar"
with level = "1", generation = "no", speed = "1000".

define vacuumBotAgt {
use vacuumBot for decisions.
use vacuumInit for init.
use vacuumUpdate for updates.

% channels
update location/2.
update direction/1.
replace square/2.
replace task/1.

}

launchpolicy {
when * launch vacuumBotAgt.

}

Figure 5.3: mas file for connecting an agent to a VacBot in the Vacuum World

The agent definition defines an agent called vacuumBotAgt which is connected to a VacBot
and launched by the launch rule in the launch policy section. The agent uses three modules for
initializing and updating the agent’s database (state), and for decision-making. The module for
updating the database will be used to keep track of the progress that the agent(s) make.

5.2.1 Channels and Types of Percepts
By connecting an agent to an environment it gains control over (part of) that environment. An
environment makes available controllable entities and an agent can be connected to such an
entity (see also Chapter 1). By connecting to an entity an agent obtains access to the capabilities
of that entity. An agent can see what the entity can see in its environment and control the actions
that an entity can perform. An agent that is connected to an entity receives percepts to “see”
what the entity sees and can request the entity to perform actions.

The connectors that we use for connecting agents to environments distinguishes three types of
percepts [3, 4]: percepts that are send once when the agent first connects to the environment,
percepts that are send always, and percepts that are send on change when a feature of the
environment changes. Each of these percept types should be handled differently and the Marbel
language provides different channel handlers for processing these different percept types.

1Even with only two obstacles inside the grid a corner cell might not be reachable for a VacBot and it may be
impossible to clean the full grid; we will assume that this never happens, or, in other words, disregard this very
special case.
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Send Once For percepts that are received only once, a programmer needs to decide whether
these should be added to the database of the agent when it is connected to the environment or
not. An example of a percept that is sent once is a percept that provides information about the
structure of a map that an entity is on. This kind of information is provided, for example, by the
Blocks World for Teams (BW4T) and StarCraft environments. For each percept of this type
that the agent should store in its database, a channel should be added to the agent definition. The
add handler should be used to process send once percepts. This handler simply adds the percepts
received on the channel to the agent’s database. This handler will also be useful for processing
messages, as we will see below. An example that we will use below for messages received about
obstacles is:

add obstacle/2.

Send Always We have already handled percepts that are sent always in previous chapters. A
percept that is received always when the environment feature is present requires an agent to both
add information to its database when it is available and remove it again when it is no longer
available. New information that becomes available should be added whereas old information
should be removed. That is what the replace handler does and send always percepts therefore
should be processed using this handler. The square/2 percept in the Vacuum World provides
an example. The percept square(RelDir, Content) provides the agent with information
about the contents of cells in its field of vision. The contents of a cell can be either empty, dust,
obstacle, and vac (for VacBot). The RelDir parameter of this percept specifies a relative
direction of view. The agent will always receive six percepts with the values left, here, right,
forwardLeft, forward, forwardRight for the parameter RelDir. The replace handler
removes the previously received six percepts from the database and replaces these with the six
new percepts it receives from the entity. We have included two channels for send always percepts
in the agent definition:

replace square/2.
replace task/1.

The task(Act) percept indicates what the entity is doing, where Act can be turn for when
a VacBot is turning, move for when it is moving, clean for when it is cleaning, or none if it
is doing nothing. A somewhat peculiar feature of the Vacuum World is that percepts are only
updated when a VacBot is doing nothing. This will be important for processing percepts as well as
for the agent’s decision-making (we should make sure that the VacBot controlled is only asked to
do something new when it is not doing anything at that moment, to also make sure new updated
percepts are received).

Send on Change A send on change percept is received each time when an environment feature
changes but not when the feature does not change. An example is a state percept that provides
information about the state of movement of an agent. In the BW4T, for example, a percept
state(traveling) is received when a robot starts moving and a percept state(arrived)
is received when the robot arrives at its destination. In between when the robot is moving, no
state/1 percept is received. This type of percept should only be removed from the agent’s
database when an update for the percept is received. This is achieved by means of the update
handler. The location/1 and the direction/1 channels use the update handler for updating
these percepts:

update location/1.
update direction/1.

https://github.com/eishub/BW4T
https://github.com/eishub/Starcraft
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The location(X, Y) percept indicates that the VacBot is at coordinates (X, Y) in the
grid. The left-upper corner has coordinates (0, 0). The cell to the right of it has coordinates
(1,0) and the cell one below the cell at (0,0) has coordinates(0,1). The direction(Dir)
percept indicates the (absolute) direction which the VacBot is facing; the Dir parameter can be
either north, east, south, or west.

5.3 Representing and Reasoning about the Vacuum World
We create a Prolog file vacuumKnowledge.pl for reasoning about the Vacuum World. At the
start of this file amongst other predicates the four channel percepts that we used in our agent
definition are declared (channel percepts are used but never defined because they are fixed by
the environment). Agents need to keep track of the contents of cells in the grid. If for all cells
inside the grid an agent knows that the cell is either clean (empty) or is an obstacle, then it can
conclude that the job is done. This is why two predicates clean/2 and obstacle/2 are declared
in the Prolog file. Because initially the agent also does not know the exact boundaries of the grid,
an important part of the exploration task of agents will be to determine the grid boundaries.
This is why a predicate gridBoundary/2 is declared. We use the fact gridBoundary(Dir,
XorY) for representing the X coordinate boundary for the directions east and west and the Y
coordinate boundary for the directions north and south of the grid. Only if agents know these
boundaries can they conclude the grid has been fully cleaned. Finally, because agents are randomly
placed on the grid initially, to be able to return to their original location we declare a predicate
initialLocation/2 so agents can store the location where they started in the grid.

:- dynamic clean/2, direction/1, gridBoundary/2, initialLocation/2, location/2,
obstacle/2, square/2, task/1.

% bot can move north, east, south, or west if that direction is not blocked
canMove(Dir) :-

(Dir = north ; Dir = east; Dir = south; Dir = west),
location(X, Y, Dir), not( obstacle(X, Y) ).

done :-
% agent is back at initial location.
location(X, Y), initialLocation(X, Y),
% compute boundaries of grid.
gridBoundary(north, N), gridBoundary(east, E),
gridBoundary(south, S), gridBoundary(west, W),
% check whether all cells within boundaries are clean or obstacles.
N1 is N+1, E1 is E-1, S1 is S-1, W1 is W+1,
forall( (between(W1,E1,X), between(N1,S1,Y)), ( clean(X,Y) ; obstacle(X,Y) ) ).

% the coordinates of the cell to the north of the current location are X, Ynew, etc.
location(X, Ynew, north) :- location(X, Y), Ynew is Y-1.
location(Xnew, Ynew, northeast) :- location(X, Y), Xnew is X+1, Ynew is Y-1.
location(Xnew, Y, east) :- location(X, Y), Xnew is X+1.
location(Xnew, Ynew, southheast) :- location(X, Y), Xnew is X+1, Ynew is Y+1.
location(X, Ynew, south) :- location(X, Y), Ynew is Y+1.
location(Xnew, Ynew, southhwest) :- location(X, Y), Xnew is X-1, Ynew is Y+1.
location(Xnew, Y, west) :- location(X, Y), Xnew is X-1.
location(Xnew, Ynew, northwest) :- location(X, Y), Xnew is X-1, Ynew is Y-1.

The two main things that an agent needs to be able to reason about are (1) whether a move can
be made and is not obstructed by an obstacle (or other VacBot), and (2) whether it is done, i.e.
whether the grid is clean and the agent is back at its original location. The rule for canMove(Dir)
first checks whether the direction Dir is a viable direction to move in (a VacBot cannot move
diagonally), then computes the coordinates of the cell the move towards Dir would move the
VacBot to, and finally checks whether that cell is not an obstacle. To compute the coordinates
of the cell in a particular direction relative to the current location of a VacBot, the agent uses
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the rules for location(X, Y, Dir). The left-upper corner has coordinates (0, 0). Moving
to the east increases the X coordinate, and moving to the south increases the Y coordinate. To
compute the coordinates of the cell directly to the north of the current location thus requires
subtracting 1 from the Y coordinate. Similar rules are defined for all directions. We also included
rules for directions on a diagonal (e.g., northeast) which are useful when we update the agent’s
database with square(RelDir, Content) facts which also include relative directions such as
forwardLeft.

To be able to conclude that the agent is done, the agent needs to be able to reason about the
grid boundaries. The predicate gridBoundary/2 is introduced for this purpose. The boundaries
to the north (Y coordinate −1) and west are given (X coordinate −1). This is not true for the
eastern and southern boundaries. We introduce somewhat ad hoc rules to compute where these
boundaries are located by counting the number of obstacles we find in a row on the same X
(eastern) and Y (southern) coordinate. We look for 5 obstacles in a row which will be sufficient
for the levels 1 and 2 of the Vacuum World.

% northern boundary is given.
gridBoundary(north, -1).
% if there are 5 obstacles in a row located on the same X>0 coordinate,
% then we conclude we have an eastern boundary.
gridBoundary(east, X) :-

obstacle(X, Y),
Yplus1 is Y+1, obstacle(X, Yplus1),
Yplus2 is Y+2, obstacle(X, Yplus2),
Yplus3 is Y+3, obstacle(X, Yplus3),
Yplus4 is Y+4, obstacle(X, Yplus4),
X>0.

% if there are 5 obstacles in a row located on the same Y>0 coordinate,
% then we conclude we have a southern boundary.
gridBoundary(south, Y) :-

obstacle(X, Y),
Xplus1 is X+1, obstacle(Xplus1, Y),
Xplus2 is X+2, obstacle(Xplus2, Y),
Xplus3 is X+3, obstacle(Xplus3, Y),
Xplus4 is X+4, obstacle(Xplus4, Y),
Y>0.

% western boundary is given.
gridBoundary(west, -1).

5.3.1 Initializing and Updating the Agent’s Database
Part of what is required by the agent’s goal in life is to return to its initial starting position when
the grid has been cleaned completely. To be able to meet this requirement and return back to
their starting position, agents need to store the initial position of the robot they are connected to.
Because robots initially are randomly placed on the grid, an agent needs to receive this starting
position from the environment via the location/2 channel. For storing this initial location of
a robot, we use the special predicate initialLocation. Storing this location only needs to
happen once, and must be done immediately when the agent is launched. For this purpose, a
module for initializing the agent’s database can be used:

use vacuumKnowledge.

module vacuumInit {
if location(X, Y) then insert( initialLocation(X, Y) ).

}

To be able to conclude that the grid has been cleaned the agent needs to keep track of which
cells are clean and which cells are obstacles. We introduced the clean/2 and obstacle/2
predicates to store this kind of information. Whether a cell is clean or an obstacle can be inferred
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from the square/2 percepts that agents receive from the environment by combining it with the
location of the VacBot. The idea is to first compute the absolute direction in the grid from the
relative direction obtained from the square(RelDir, Content) fact, and then to compute
the coordinates (X, Y) of the cell from this absolute direction. Using these coordinates, if the
Content parameter is instantiated with empty we insert the fact clean(X, Y) in the agent’s
database, and if Content is instantiated with obstacle we insert the fact obstacle(X, Y).
The square(here, Content) fact does not require us to compute the coordinates of the cell
which we can simply retrieve from the current location(X, Y) of the VacBot. Because we want
to update the database with all six square/2 facts that the agent receives, we use forall... do...
rules to process all of these facts. As these updates need to happen each time new information
is received from the environment, we use a module for updating the database and in this module
check whether new information will have been updated by the task(none) fact in line with what
we discussed above:

use vacuumKnowledge.

% Update database using square percepts.
module vacuumUpdate {

if task(none) then {
forall square(here, empty), location(X, Y)

do insert( clean(X, Y) ).

forall square(RelDir,empty), absDirection(RelDir,AbsDir), location(X,Y,AbsDir)
do insert( clean(X, Y) ).

forall square(RelDir,obstacle), absDirection(RelDir,AbsDir), location(X,Y,AbsDir)
do insert( obstacle(X, Y) ).

}
}

The final missing piece of the puzzle is how to compute an absolute direction (north, etc.)
from a relative direction (left, etc.) from the current absolute direction direction(Dir) the
VacBot is facing towards. We use a very simple approach by explicitly coding all the information.
We only provide the rules for the relative direction left here. Rules for other relative directions
are similar.

% when VacBot is facing north, its left is to the west, etc.
absDirection(left, west) :- direction(north).
absDirection(left, north) :- direction(east).
absDirection(left, east) :- direction(south).
absDirection(left, south) :- direction(west).

5.4 A Single Agent Strategy for the Vacuum World
We implement a basic strategy for our single agent. Most important, and therefore our first rule,
will be to terminate the agent by the exit-modulewhen the agent is done. The second highest
priority, and therefore our second rule, is to perform the clean action when a VacBot stands on
dust. Third, the agent will greedily move towards dust when possible. If we can move to a cell
with dust, this also means that we have not been there yet because in that case the agent would
have applied the second rule in that cell first. Moving towards dust thus also moves a VacBot to
a new square. Finally, if the agent can do nothing is, the idea is to explore the grid by making a
random move. The agent will, moreover, only select a new action when the VacBot it controls is
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doing nothing (task(none) succeeds).

use vacuumKnowledge.

order=linearrandom.

module vacuumBot {
% quite when we’re done.
if done then exit-module.

if task(none) then {
% clean when we’re standing on dust.
if square(here, dust) then clean.

% if we can move towards dust, do it (greedy).
if square(RelDir, dust), absDirection(RelDir, AbsDir), canMove(AbsDir)

then move(AbsDir).

% otherwise, make a random move.
if canMove(Dir) then move(Dir).

}
}

In a default decision-making module, an action rule would be applied with the first binding
obtained by evaluating the query of that rule. This would result in the agent to always make
the same move when applying the fourth rule for exploring the grid. We can change this by
selecting a slightly different mechanism for evaluating rules by the order option of a rule. For
the vacuumBot module, we set the order option to linearrandom. This option still evaluates
the rules in linear order as they appear in the module, but randomly selects one of the bindings
obtained by evaluating the query to instantiate the action with. In particular, this means that
the last rule performs a random move action out of the possible moves at a location.

5.4.1 Rule Evaluation Order
An action rule if <query> then <action> is evaluated by first evaluating the query <query>
and computing all bindings for that query. The instantiations of the <action> with those bind-
ings are called the action options. A rule may generate multiple action options. In the example
of Figure 5.2, the query in the action rule if canMove(Dir) then move(Dir) computes
four different bindings and four action options move(north), move(east), move(south),
and move(west). Which of these action options are actually performed by the agent de-
pends on the rule evaluation order that is used to execute a module. By default, action
rules that appear in a module for decision-making (for decisions) are evaluated in the or-
der they appear in a module from top to bottom. The first rule that is applicable, i.e., gen-
erates an option, is applied. In the example of Figure 5.2, the agent can move towards a cell
with dust and the rule if square(RelDir, dust), absDirection(RelDir, AbsDir),
canMove(AbsDir) then move(AbsDir) is applicable with only one instantiation: move(south).
This is the default linear order style of rule evaluation.

As we have seen, the rule evaluation order of modules for initialization (for init) and for
updating (for updates) is different. Instead of applying only the first applicable rule, in these
types of modules all rules are evaluated in order and all of the rules that are applicable are applied.
The rules are still evaluated from top to bottom but rule evaluation does not stop when the first
applicable rule has been found. We call this a linear all style of rule evaluation.

The order of rule evaluation can be changed by specifying an order option for a module. This
option can be specified after the use clauses in a module. We can, for example, add order=random
in our vacuumBot module to change to a random order of rule evaluation. The effect of choosing
this style of evaluation is that the agent will randomly select one action out of the set of all
options. In our example, the agent would randomly choose to perform one of the actions in the set
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move(south), move(north), move(east), move(south), or move(west). Note that the
action move(south) appears twice as the two last rules in the module both generate this action.
As a result, the agent will non-deterministically execute its program and may execute differently
each time it is run.

The options that are available for the order option are the linear, linearall, linearrandom,
random, linearallrandom, and randomall options. We have already discussed the first four
of these options. The difference between the linearallrandomorder and the linearrandomorder
is the same as that of the linearalland the linearorder: the first evaluates all rules in a mod-
ule and applies all applicable rules in a linear order while the second will only apply the first one
that is applicable. Both rule evaluation orders will randomly select one of the applicable instanti-
ations of a rule. Finally, the randomall order will apply all applicable rules as the linearall
order does. This style of evaluation will evaluate the rules in random order though and if a rule
generates multiple options select one at random as well.

5.5 Summary
In this chapter, we discussed a single agent for the Vacuum World. We introduced and discussed
various new concepts, including how channel handlers relate to percept types and how the rule
evaluation order of a module can be used to change the way rules are evaluated and applied when
executing a module. We illustrated how the linearrandom option can be used to make an agent
explore its environment.

The chapter does not yet discuss a 2-agent system for the Vacuum World, and in
that respect is still incomplete.
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